
SIMPLE	PROCEDURE	FOR	ADDING	SMART	BASIC	TO	XCODE	[12-02-2016]	 1	
	

Simple	Procedure	for	Adding	Smart	BASIC	to	Xcode	
[Current	as	of	December	02,	2016]	
	
Smart	BASIC	allows	you	to	create	genuine	iOS	applications	which	can	be	
valid	for	App	Store	submission	or	Ad-Hoc	distribution.	
	
Although	all	iOS	applications	should	be	compiled	with	Xcode,	you	will	not	
need	to	write	any	single	line	in	Objective	C	language	-	you	will	simply	
compile	a	template	Xcode	project	together	with	your	smart	BASIC	program	
code	and	any	support	files	such	as	images	or	sound	files.	
	
Of	course	you	will	need	an	Apple	Developer	License	and	knowledge	of	how	
to	use	Xcode	for	compiling	and	code	signing	your	applications.	But	these	
topics	are	out	of	scope	of	smart	BASIC	support	and	should	be	referred	to	
respective	Apple	help	resources.	
	
This	tutorial	explains	step	by	step	how	to	create	an	iOS	application	from	a	
short	example	smart	BASIC	program	called	Turtle.	
	

1. Copy	the	following	text	of	the	BASIC	program	below	and	create	a	text	
file	named	"turtle.txt"	from	it	or	open	the	attached	file	in	Adobe.	

	
' Turtle graphics 20141001
' Coded for Smart Basic by Henko
' Slow Turtle modification by Mr.K
' Dutchman added settings, slider and auto-scaling
' Shadow added by Henko (on special request by Mr.K)
'===== settings ======
delay=0.0
shadows=0 ' 1 or 0
direction=1 ' 1=ClockWise, -1=counterCW
bcolor(1,1,0) ' background r,g,b
dcolor(1,0,0) ' drawing color
border=4 ' size of edge
'---------------------
sw=screen_width()
sh=screen_height()
size=min(sw,sh)/2.5
dy=size/20 'offset for slider
t_init(shadows)
count=countvalue
begin:
angle=-direction*360/count
t.s=3*size/count
for i=1 to count
 for j=1 to count ! t_step(angle) ! pause delay ! next j
 t_turn(angle,0)
 next i

SIMPLE	PROCEDURE	FOR	ADDING	SMART	BASIC	TO	XCODE	[12-02-2016]	 2	
	

' wait for slider change
wait:
if button_pressed("stop") then end
if slider_changed("count") then
 do ! until slider_changed("count")<>1
 newcount=countvalue
else ! goto wait
endif
if newcount=count then wait
count=newcount
clearcanvas(border)
goto begin
end
def countvalue
countvalue=3+int(18*slider_value("count"))
end def
def t
x=0 ! y=0 ! s=0 ! a=0
end def
def t_move(continue)
dis=continue*t.s ! xdis=dis*cos(t.a) ! ydis=dis*sin(t.a)
t.x+=xdis ! t.y-=ydis
draw line to t.x,t.y
end def
def t_step(angle)
t.a+=angle ! t_move(1)
end def
def t_turn(angle,continue)
t.a+=angle ! t_move(continue)
end def
def bcolor(r,g,b)
.rb=r ! .gb=g ! .bb=b
end def
def dcolor(r,g,b)
.rt=r ! .gt=g ! .bt=b
end def
def clearcanvas(edge)
graphics clear 0,0,0
fill color .rb,.gb,.bb
fill rect edge,edge to 2*.size-edge,2*.size-edge
end def
def t_init(withshadow)
graphics ! graphics clear ! option angle degrees
.xc=.size ! .yc=.size
t.x=.xc ! t.y=.yc ! t.a=0
sprite "turtle" begin 2*.size,2*.size
clearcanvas(.border)
sprite end
option sprite pos central
sprite "turtle" at .sw/2,.sh/2-.dy
sprite "turtle" show
sprite "turtle" begin
iy=.sh/2+.size ! bwidth=.size/4 ! bx=.sw/2+.size-bwidth
slider "count" value 0.5 at .sw/2-.size,iy hsize 2*.size-bwidth
set buttons custom ! draw color 1,1,0 ! fill color 1,0,0
button "stop" title "STOP" at bx,iy-dy size bwidth,dy
draw color .rt,.gt,.bt ! draw size 2
if withshadow then shadow on
draw to t.x,t.y
end def	

	
	

(Original	code	available	for	download	at	http://kibernetik.pro/forum/viewtopic.php?p=3493#p3493	
	

SIMPLE	PROCEDURE	FOR	ADDING	SMART	BASIC	TO	XCODE	[12-02-2016]	 3	
	

2. Download	smart	BASIC	SDK	for	Xcode	from	the	following	location:	
	

http://kibernetik.pro/BASIC%20SDK.zip
	

3. Decompress	the	contents	of	the	zip	file.	There	will	be	a	single	folder	
named	“BASIC	SDK”	containing	several	files	and	folders.	This	folder	is	
your	template	folder	for	all	future	program	projects.	
	

4. Rename	the	template	folder	name	from	"BASIC	SDK"	to	"Turtle"	for	
this	example.	
	

5. Copy	the	text	file	"turtle.txt"	that	you	created	in	step	#1	to	the	
template		folder	"Turtle/Samples"	folder.	

	
6. In	Finder,	open	the	template	project	in	Xcode	by	double-clicking	the	

file	named	“Application.xcodeproj”	in	the	newly	renamed	Turtle	
template	folder.		

	

SIMPLE	PROCEDURE	FOR	ADDING	SMART	BASIC	TO	XCODE	[12-02-2016]	 4	
	

7. In	Xcode,	select	the	file	"BASIC/AppDelegate.m"	and	enter	the	
filename	“turtle.txt”	inside	the	empty	quotes	for	the	line	“define	
SB_FILE	@...”	
	

	
	

8. In	the	file	"BASIC/Supporting	Files/Application-Info.plist",	change	the	
value	for	"Bundle	display	name"	from	the	default	"Application"	to	
"Turtle".	

	

	

SIMPLE	PROCEDURE	FOR	ADDING	SMART	BASIC	TO	XCODE	[12-02-2016]	 5	
	

9. Update	the	project	Name	field	from	the	default	"Application"	to	
"Turtle".	
	

	
10. Select	the	Xcode	menu	item	Product	>	Scheme	>	Edit	Scheme...	and	

in	the	Archive	section,	update	the	default	name	"Application"	to	
"Turtle".	
	
	

	
11. Finally,	compile	the	project	by	selecting	from	the	Xcode	menu	

Product	>	Run.	This	will	save	all	of	your	settings,	compile	the	code	
and	run	it	in	the	selected	simulator.		

SIMPLE	PROCEDURE	FOR	ADDING	SMART	BASIC	TO	XCODE	[12-02-2016]	 6	
	

App	Distribution	Options	
	

You	can	now	do	anything	you	want	with	your	application;	compile	it	for	
App	Store	submission,	for	Ad-Hoc	distribution	or	test	it	in	the	iOS	simulator.	
	

Compiling	for	distribution	through	the	Apple	App	Store	is	beyond	the	scope	
of	this	document	and	requires	the	purchase	of	an	Apple	Developer’s	
License.	
	

Ad-Hoc	distribution	is	for	private	testing	of	your	app	on	your	own	devices	
and	can	be	accomplished	very	easily.	You	can	also	run	your	app	in	an	Xcode	
iOS	simulator.	Depending	on	the	power	of	you	computer	and	the	simulator	
version,	the	simulators	can	be	either	slower	or	faster	than	the	actual	
device.	
	

The	procedures	for	Ad-Hoc	and	Simulator	testing	are	similar	with	just	a	
couple	of	differences.	
	

Simulator	Testing	
	

1. In	the	Project	Editor	under	General:	Signing,	make	sure	the	option	
“Automatically	manage	signing”	is	selected,	then	for	the	Team	field,	
use	the	pull	down	to	select	your	ID.	(If	you	haven’t	already	entered	
your	Apple	ID	into	Xcode,	select	the	button	to	do	so,	then	choose	
your	ID	from	the	drop	down	menu	for	Team.	You	can	also	enter	it	
from	the	main	menu	in	Xcode	>	Preferences:	Accounts.)	
	

	

SIMPLE	PROCEDURE	FOR	ADDING	SMART	BASIC	TO	XCODE	[12-02-2016]	 7	
	

2. Select	the	desired	iOS	simulator	from	the	menu	item	Product	>	
Destination.	
	

	
	

3. From	the	main	menu,	select	Product	>	Run.	The	app	will	compile	
then	start	the	iOS	simulator	and	automatically	run	your	app.	

	
Ad-Hoc	iDevice	Testing	
	

There	are	just	two	minor	differences	when	compiling	for	an	actual	iDevice.	
The	first	difference	is	the	library	file	choice	in	the	BASIC	SDK	template	
folder.	The	template	folder	contains	three	library	files;	“libSB.a”,	“libSB-
dev.a”(device),	and	“libSB-sim.a”(simulator).	By	default	the	“libSB.a”	file	is	
an	exact	duplicate	of	the	“libSB-sim.a”	file.	This	is	because	Xcode	uses	the	
“libSB.a”	file	for	the	build,	but	you	have	to	choose	which	library	to	use	
depending	on	the	destination.	For	a	simulator	build,	you	don’t	have	to	do	
anything.	The	“libSB.a”	file	is	already	a	renamed	copy	of	the	“libSB-sim.a”	
file.	But	for	ad-hoc	distribution	to	a	device,	you	must	rename	the	“libSB-
dev.a”	file	to	“libSB.a”	(replacing	any	existing	copy)	before	building	the	
project.	
	
The	second	difference	is	you	have	to	plug	your	iDevice	into	the	computer	
for	Xcode	to	recognize	it	as	a	build	destination.	

	

SIMPLE	PROCEDURE	FOR	ADDING	SMART	BASIC	TO	XCODE	[12-02-2016]	 8	
	

1. In	the	Project	Editor	under	General:	Signing,	make	sure	the	option	
“Automatically	manage	signing”	is	selected,	then	for	the	Team	field,	
use	the	pull	down	to	select	your	ID.	(If	you	haven’t	already	entered	
your	Apple	ID	into	Xcode,	select	the	button	to	do	so,	then	choose	
your	ID	from	the	drop	down	menu	for	Team.	You	can	also	enter	it	
from	the	main	menu	in	Xcode	>	Preferences:	Accounts.)	
	

	
	

2. Plug	in	your	iDevice	(iPhone,	iPad,	etc)	using	the	USB	cable.	
	

3. Select	your	iDevice	from	the	menu	item	Product	>	Destination.	
	

	

SIMPLE	PROCEDURE	FOR	ADDING	SMART	BASIC	TO	XCODE	[12-02-2016]	 9	
	

4. In	Finder,	rename	the	“libSB-dev.a”	file	to	“libSB.a”.	
	

5. From	the	main	menu,	select	Product	>	Run.	The	app	will	compile	and	
start	the	app	on	your	iDevice.	

	
Optimizing	App	Size	
	

There	is	one	file	in	the	SDK	BASIC	template	that	stands	out	as	particularly	
large:	default_bank.sf2	in	the	Sounds	directory.	If	your	application	will	not	
be	using	the	MIDI	NOTES	commands	to	play	sounds,	you	can	replace	this	
file	with	a	specially	created	empty	version	of	the	file	of	the	same	name.	A	
copy	of	this	file	is	included	in	this	PDF	in	the	Attachments	on	the	left.	
	
Simply	replace	the	existing	“default_bank.sf2”	file	with	the	special	empty	
file	named	“empty_default_bank.sf2”	and	then	rename	it	to	
“default_bank.sf2”.	
	
Your	resulting	compiled	apps	will	no	longer	be	able	to	produce	realistic	
sampled	MIDI	sounds	using	the	NOTES	command,	but	you	can	still	play	
individual	audio	files	using	the	MUSIC	command	and	your	app	will	be	
substantially	smaller	in	size.	
	
	
NOTES:	
	
a)	These	procedures	was	tested	using	the	latest	Xcode	version	8.1	(8B62)	
	 and	8.2	beta	running	on	macOS	Sierra.	
	
b)	Xcode	8.x	does	not	support	compiling	code	for	iOS	versions	older	than	
	 8.0.	To	do	so,	you	must	install	a	separate	previous	version	of	Xcode.	You	
	 can	also	run	multiple	copies	of	Xcode	on	the	same	computer.	
	
	
	
	
The	bulk	of	this	tutorial	was	copied	from	the	forum	entry	entitled	“Adding	smart	BASIC	to	Xcode	Tutorial”	
on	the	Mr.	Kibernetik	Software	forum	at	http://kibernetik.pro/forum/viewtopic.php?f=34&t=726	dated	
Oct	27,	2014.	Subsequent	edits,	updates	and	PDF	conversion	by	Scott	A.	Rossell.	

	App Distribution Options
	Simulator Testing
	Ad-Hoc iDevice Testing
	Optimizing App Size
	NOTES

' Turtle graphics 20141001
' Coded for Smart Basic by Henko
' Slow Turtle modification by Mr.K
' Dutchman added settings, slider and auto-scaling
' Shadow added by Henko (on special request by Mr.K)
'===== settings ======
delay=0.0
shadows=0 ' 1 or 0
direction=1 ' 1=ClockWise, -1=counterCW
bcolor(1,1,0) ' background r,g,b
dcolor(1,0,0) ' drawing color
border=4 ' size of edge
'---------------------
sw=screen_width()
sh=screen_height()
size=min(sw,sh)/2.5
dy=size/20 'offset for slider
t_init(shadows)
count=countvalue
begin:
angle=-direction*360/count
t.s=3*size/count
for i=1 to count
 for j=1 to count ! t_step(angle) ! pause delay ! next j
 t_turn(angle,0)
 next i
' wait for slider change
wait:
if button_pressed("stop") then end
if slider_changed("count") then
 do ! until slider_changed("count")<>1
 newcount=countvalue
else ! goto wait
endif
if newcount=count then wait
count=newcount
clearcanvas(border)
goto begin
end

def countvalue
countvalue=3+int(18*slider_value("count"))
end def

def t
x=0 ! y=0 ! s=0 ! a=0
end def

def t_move(continue)
dis=continue*t.s ! xdis=dis*cos(t.a) ! ydis=dis*sin(t.a)
t.x+=xdis ! t.y-=ydis
draw line to t.x,t.y
end def

def t_step(angle)
t.a+=angle ! t_move(1)
end def

def t_turn(angle,continue)
t.a+=angle ! t_move(continue)
end def

def bcolor(r,g,b)
.rb=r ! .gb=g ! .bb=b
end def

def dcolor(r,g,b)
.rt=r ! .gt=g ! .bt=b
end def

def clearcanvas(edge)
graphics clear 0,0,0
fill color .rb,.gb,.bb
fill rect edge,edge to 2*.size-edge,2*.size-edge
end def

def t_init(withshadow)
graphics ! graphics clear ! option angle degrees
.xc=.size ! .yc=.size
t.x=.xc ! t.y=.yc ! t.a=0
sprite "turtle" begin 2*.size,2*.size
clearcanvas(.border)
sprite end
option sprite pos central
sprite "turtle" at .sw/2,.sh/2-.dy
sprite "turtle" show
sprite "turtle" begin
iy=.sh/2+.size ! bwidth=.size/4 ! bx=.sw/2+.size-bwidth
slider "count" value 0.5 at .sw/2-.size,iy hsize 2*.size-bwidth
set buttons custom ! draw color 1,1,0 ! fill color 1,0,0
button "stop" title "STOP" at bx,iy-dy size bwidth,dy
draw color .rt,.gt,.bt ! draw size 2
if withshadow then shadow on
draw to t.x,t.y
end def

