
Smart Basic
© Mr. Kibernetik

Reference Manual
version 6.9

collected and edited by 'Dutchman' Ton Nillesen, 20241015

Smart Basic
Reference Manual

version 6.9

collected from the internal documentation of the app
rearranged and edited by 'Dutchman' Ton Nillesen

modification date 20241015

Document generated in free software office package: LibreOffice

4 Smart Basic Reference Manual © Mr. Kibernetik

Contents
Personal notes...6
Modifications since previous manual version 6-6...7
1. Basics..8

1.1. Variables...8
1.2. Arrays..8
1.3. Expressions..10
1.4. Loops & Jumps...11
1.5. Subroutines...12
1.6. Remarks and comments...12
1.7. User functions...13
1.8. Comparison and Logical operators...14
1.9. Scope variables..14

2. Input & output..16
2.1. Touch handling..16
2.2. Input from keyboard or file..17
2.3. Built-in data...17
2.4. Camera...18
2.5. Phone..19
2.6. Clipboard...19
2.7. Print...20

3. Math functions...22
3.1. General operations and functions...22
3.2. Complex numbers...22
3.3. Arithmetic..24
3.4. Trigonometry...25
3.5. Logic...26

4. String functions..27
5. Interface objects..28

5.1. About pages..29
5.2. Presets..29
5.3. Handling existing objects..30

5.3.1 Listings of available objects...30
5.3.2 Changing and testing visibility...30
5.3.3 About sizing for different devices...32

5.4. Buttons..32
5.5. Switches..33
5.6. Sliders...33
5.7. List panels...33
5.8. Text Fields...34
5.9. Browsers...36

6. Files & folders..38
6.1. Current, parent and root directory...38
6.2. File writing options..38
6.3. Directory commands and functions...38
6.4. File commands and functions...39
6.5. Compression and decompression..41

collected and edited by 'Dutchman' Ton Nillesen 5

7. Display on screen..41
7.1. Screen characteristics...41
7.2. Text view...42

7.2.1 Text output styling..42
7.3. Graphics view...43

7.3.1 Handling Retina display resolution..43
7.3.2 Presets..43
7.3.3 Draw text...46
7.3.4 Draw pixels..46
7.3.5 Draw lines..47
7.3.6 Draw figures..47
7.3.7 Images and screenshots...48

8. Sprites...49
8.1. General...49

8.1.1 Initial commands..49
8.1.2 Sprite visibility..49
8.1.3 Animation...49
8.1.4 Sprite display priority...50

8.2. Sprite presets..50
8.3. Get sprite info..50
8.4. Sprite creation, loading, saving and initiation..51
8.5. Positioning and moving sprites...54
8.6. Sprite order rules..55
8.7. Multi-frame sprites..57

9. Music, sound and speech...59
9.1. Playing audio files...59
9.2. Playing musical notes and MIDI compositions......................................59
9.3. Default Musical instruments..63
9.4. Speech..64

10. Networking..65
11. Miscellaneous..67

11.1. Date and Time functions...67
11.2. Program launch and discontinuing..67
11.3. GPS...68
11.4. Device properties..70
11.5. Available fonts...72

12. User interface settings..72
12.1. Vibration..72
12.2. Text encoding/decoding..73
12.3. UNDO/REDO when editing code..73
12.4. Code marking..73
12.5. App preferences and presets..74
12.6. Custom skins..74

13. Notes...77
14. Examples...80
Appendix A. Obsolete commands...81

6 Smart Basic Reference Manual © Mr. Kibernetik

Smart BASIC version 6.9 developed by Mr. Kibernetik
Welcome to support forum http://nitisara.ru/forum

to share programs and discuss programming topics!

Personal notes

• File names
Files, i.e. programs, created in the editor will get the extension '.txt' by default.

Smart Basic, however allows to edit and run program-files with other (al-
though not all) extensions. E.g. the extension '.sb', initiated by Microsoft for
'Small Basic', can be used instead. It will prevent problems like that in:
https://nitisara.ru/forum/viewtopic.php?t=2636

Other text-files for e.g. data or info can be named without an extension, only
ending with a dot, e.g. “Read me.” Extensions with length≠3 however, as
'.tx' or '.info' could also be used.

In order to separate program-files from data-files in the listing it is recommended to
start program-filenames with a capital and data-filenames in lowercase. In this
way the program-files will appear at the top of the listing.
Start the filename of a program under development with a hyphen '-'. It will then ap-
pear at the very top.

• Screen sizes
Results obtained from PRINT SCREEN_WIDTH();”x”;SCREEN_HEIGHT()

Device Portrait Landscape
iPhone 3.5-inch 320x436 480x276
iPhone 4-inch 320x524 568x276

iPad 768x980 1024x724

 The height of the top-bar in
Smart BASIC is 44 points.

• Number accuracy
Smart BASIC uses standard 64-bit floating point numbers in 1-11-52 bit patterns for
sign-power-mantissa parts.
Any integer with an absolute value 2^53 or smaller will be represented exactly.
Smart BASIC operates floating numbers of double precision

• Tree structure
Smart BASIC is designed to work with cloud storage. The root directory however
can not be transferred as a single folder. If you want to save your contents of Smart
Basic to iCloud, then you have to transfer the contents of the root piece by piece. As
a consequence the contents of the root should be kept at minimum.
After installation the app will contain two items in the root directory, the example
program 'hello world.txt' and the folder 'Examples' which contains a wealth of ex-
ample-programs. Furthermore it is wise to separate your own 'stuff' from the contri-
butions of forum-members. So my root directory contains only the following folders:

• Examples
• From forum
• My stuff

http://nitisara.ru/forum
https://nitisara.ru/forum/viewtopic.php?t=2636

collected and edited by 'Dutchman' Ton Nillesen 7

Modifications since previous manual version 6-6

• There are no changes in the user-instructions since version 6-6
• Important remarks on NOTES are added

See https://nitisara.ru/forum/viewtopic.php?p=15522#p15522 by smbstarv

https://nitisara.ru/forum/viewtopic.php?p=15522#p15522

8 Smart Basic Reference Manual © Mr. Kibernetik

1. Basics
An introduction to programming in Basic can be found on the forum:

https://nitisara.ru/forum/viewforum.php?f=31
1.1. Variables

There are two types of variables in smart BASIC: numeric and string.
String variables have "$" sign at the end and can contain alphabetic and numeric
characters.
Numeric variables can contain real and complex numbers.
Numeric variables with real numbers:

A = 10
B = 0.5E2

Numeric variables with complex numbers:
C = 2 - 3i
D = 1i

The floating point numbers are of double precision.
Numeric variable precision corresponds to 64-bit representation of 1-11-52
for sign-power-mantissa. Any integer with an absolute value smaller than
2^53 will be represented exactly.

String variable:
T$ = "Name"

String value can use quote symbol " by specifying double quotes "". Example:
N$ = """This is a quoted text"""

Command LET used in standard BASIC can be omitted, so:
LET X = 1

is similar to:
X = 1

1.2. Arrays
Arrays can be numeric or string with one, two or three dimensions.
If the command-description does not state what kind of array should be used, then
any kind of array is possible. If array type is restricted then it is stated as "numeric
array" or "string array".
Array should be declared before first use if its size is larger than 10.
Only real component of complex number is used in indices of arrays.

OPTION BASE N
makes array-indices start with [n]. Valid values are 0 or 1. Default is 0.
As strings are handled as one-dimensional arrays, this command has also effect on
the index of the separate characters in the string.

OPTION_BASE ()
returns current value, set by OPTION BASE command.

DIM ident(size)
Declares an array.
'ident' can be a numerical or string-identifier. 'size' determines the size of the array.
Several arrays can be declared on a single line separated by "," character.

DIM T$(20), B(50)

https://nitisara.ru/forum/viewforum.php?f=31

collected and edited by 'Dutchman' Ton Nillesen 9

Size can be determined by a variable.
NumPoints=10
DIM PointX(NumPoints), PointY(NumPoints)
...
FOR i=1 to NumPoints-1
 PointX(i)=PointY(i+1)
 PointY(i)=PointY(i+1)
NEXT i

Example of a 2-dimensional array:
Lines=10 ! Columns=3
DIM Table$(Lines,Columns)
Table$(1,1)=”Item”)
Table$(1,2)=”Origin”
Table$(1,3)=”Value”)
RESTORE TO TableContent ' Set pointer to list of data
FOR i=2 TO Lines
 FOR j=1 TO Columns
 READ Table$(i,j)
 NEXT j
NEXT i

GET DIM N XSIZE X YSIZE Y ZSIZE Z
gets sizes of "x", "y" and "z" dimensions of array [n] and saves them to numeric vari-
ables [x], [y] and [z].
You may specify only those dimensions which you need, for example:

GET DIM n XSIZE x
Sizes of each dimension in a multi-dimension array can be changed with just anoth-
er DIM command. The number of dimensions cannot be changed in re-declaring.
Speed of DIM command is equal whether it is first declaration of array or it is a re-
declaration. Definitely it is faster to re-declare an array than clearing it with zeroes in
a FOR/NEXT loop.

OPTION SORT ASCENDING

OPTION SORT DESCENDING

OPTION SORT INSENSITIVE

OPTION SORT SENSITIVE
Sets sorting of command SORT to be in ascending, descending, case insensitive or
case sensitive order.

SORT M
Sorts numeric or string one-dimensional array [m]. By default sorting is performed in
ascending order, case sensitive.

SORT M AS N
Sorts numeric or string one-dimensional array [m] and outputs sorting result as one-
dimensional numeric array of indices [n], which indicate elements in array [m] in a
sorted order. OPTION BASE command affects starting value in array [n].

SORT M TO N
Sorts numeric or string one-dimensional array [m] and saves sorting result to array
[n]. Types of arrays [m] and [n] must be identical.

10 Smart Basic Reference Manual © Mr. Kibernetik

Referencing an array from a function
There are different ways to access array from function. This program sample
demonstrates them:

dim array(10,10)
array(1,2)=1.2
array(3,4)=3.4
print func1(array,1,2)
print func2(3,4)
end

def func1(ar(,),x,y)
return ar(x,y)
end def

def func2(x,y)
return .array(x,y)
end def

Function "func1" accepts array as a function parameter.
Function "func2" directly access the global array.
Output of this program is:

1.2
3.4

1.3. Expressions
Numeric math operations are: +, -, *, /, %, ^.
Operation % is a remainder of division, ^ is a power operation.

A = (2 ^ 3 + 1) * 2

Strings concatenation operation is: &
T$ = "Result is " & M$

Numeric to string and back conversion is automatic:
A = B$ + 5
B$ = A

Compact notation in assignments
A = A + B

can be written shorter:
A += B

for any numeric math operation or for string concatenation operation.
Thus, the following code:

C *= D + E
A$ &= "Text"

is equivalent to:
C = C * (D + E)
A$ = A$ & "Text"

Complex numbers
Math operations can accept real and complex arguments. smart BASIC easily un-
derstands complex and real numbers and properly calculates them.
Complex numbers are written as real part plus (minus) imaginary part with letter 'i'
at the end:

A = 2 + 3i
Without imaginary part it is a usual real number:

A = 2

collected and edited by 'Dutchman' Ton Nillesen 11

If real part of complex number is zero then you can write only imaginary part, for ex-
ample:

A = 3i
In smart BASIC it is fine to write:

A = B + 2 - 4 * 3i + 10 - 2i ^ 2

1.4. Loops & Jumps
Only real component of complex number is used in cycles.

• Loops
FOR / NEXT

FOR K = 0 TO 10 STEP 2
...
NEXT K

If parameter STEP is omitted then it is assumed to be 1.

WHILE / END WHILE
WHILE K < 10
…
END WHILE

DO / UNTIL
DO
...
UNTIL K < 10

• Jumps
All labels are local, this means that every user-defined function has its own labels.

BREAK
interrupts WHILE/WILE END, DO/UNTIL and closest FOR/NEXT loops:

DO
...
IF K = 5 THEN BREAK
...
UNTIL K < 10

BREAK [x]
interrupts FOR/NEXT loop for variable [x]:

FOR K = 0 TO 10
...
 IF K = 5 THEN BREAK K
...
NEXT K

CONTINUE
jumps to next iteration of WHILE/WILE END, DO/UNTIL and closest FOR/NEXT
loop:

DO
...
IF K = 5 THEN CONTINUE
...
UNTIL K < 10

12 Smart Basic Reference Manual © Mr. Kibernetik

CONTINUE [x]
loops to next iteration of FOR/NEXT loop for variable [x]:

FOR K = 0 TO 10
...
IF K = 5 THEN CONTINUE K
...
NEXT K

GOTO label
10 Y = X / 2
GOTO 10
Add: A = B + 1
GOTO Add

ON / GOTO
ON x GOTO 10, 20, 30

if [x] = 1 then goes to 10, if [x] = 2 then goes to 20 and so on.

ON / GOSUB
ON x GOSUB 10, 20, 30

Similar to ON GOTO, but calls subroutines instead of jumps.

1.5. Subroutines
GOSUB
Goto subroutine

RETURN
Return from subroutine
Examples:

Pi=3.141592653
A=Pi/2
GOSUB Hypotenuse
PRINT Result
END
Hypotenuse:
Result= SQR(SIN(A)^2 + COS(A)^2)
RETURN

Examples of calling subroutine at line number or label:
GOSUB 100
GOSUB MY_SUB

Examples of conditional subroutine selection by line number or label:
ON Result GOSUB 100, 130, 180
ON SIGN(Result)+2 GOSUB Increase, Compare, Decrease

1.6. Remarks and comments
There are three ways to make remarks or comments in your program.
Single line remarks, by using command REM or by using symbol ', for example:

REM comment
A = B + 1 REM comment
'comment
A = B + 1 'comment

You can comment blocks of text by surrounding it with symbols /* and */
for example:

/* comment begin
comment end */

collected and edited by 'Dutchman' Ton Nillesen 13

1.7. User functions
Single-line definition:

DEF F (X,Y) = SQR (X^2 + Y^2)

Multiple-line definition:
DEF F (X,Y)
F = SQR (X^2 + Y^2)
END DEF

Example of arrays passed to functions as parameters:
DIM M (100), N(20,20)
DEF FUNC1 (X())
...
END DEF
DEF FUNC2 (Y(,))
...
END DEF
CALL FUNC1 (M)
CALL FUNC2 (N)

Function execution can be terminated by command RETURN.
Also RETURN command can return function result.
If the return-value is a string, then the function-name should end with '$'.
Example:

DEF spaces$(n) ' return string with n spaces
a$=""
FOR i=1 TO n
 a$&=" "
NEXT i
RETURN a$
END DEF

User function without parameters can be defined and called with or without "()".
All variables defined inside function are local and static.
Arrays passed to function as parameters are references, this means that this is the
same array in function and in main code. So modifying the array has global effect.
NOTE: Array cannot be re-initialized inside the function when it is passed as a
parameter to this function. So only the contents can be changed, not the size.
Other parameters are passed to functions by value.
In the following example the value of 'b' will not change.

b=10
PRINT b
CALL func(b)
PRINT b
END
REM --- User function
DEF func(a)
 PRINT a
 a-=1
 PRINT a
END DEF

Functions may be used recursively, i.e. the function can be called within the defini-
tion of the function. Example:

DEF factorial(n)
IF n>1 THEN factorial=n*factorial(n-1) ELSE factorial=1
END DEF

User-defined functions can be defined anywhere in the program, except within func-

14 Smart Basic Reference Manual © Mr. Kibernetik

tions. Subroutines however can be used within functions and will be handled as
local code.

1.8. Comparison and Logical operators
Comparison operators are: =, <, >, <=, >=, <>
Logical operators are: AND, OR, NOT
Comparisons are available for numbers and for strings.
For complex numbers available comparison operators are: =, <>.

IF / ELSE
Single-line:

IF A = 0 THEN GOTO 10 ELSE GOTO 20
Short version:

IF A = 0 THEN 10 ELSE 20

IF / ELSE / END IF
Multiple-line:

IF X < 0 OR Y > 0 THEN
 A = 0
ELSE
 A = 1
END IF

1.9. Scope variables
Although all variables are local, smart BASIC allows you to use any variable from
any function inside any other function. For this purpose you can use scope variable
syntax as "scope.name", where "scope" is variable definition scope and "name" is
variable name. For example, if in your program F function is defined:

DEF F(X)
X2 = X^2
X3 = X^3
F = X2 + X3
END DEF

then you can get access to its local variables X2 and X3 outside of this function like
this:

X = F(2)
PRINT X; F.X2; F.X3

Scope variable syntax allows you directly set function parameters and get any num-
ber of function results.
So called "global" variables, when you get access to variables outside the function,
in scope variables syntax looks similar but without any scope:

DEF F
F = .X^2
END DEF
...
X = 2
PRINT F

• Notes from the forum:
Grouping variables to virtual scopes

An attractive implementation of scope variables is grouping of variables to virtual
scopes. It is not necessary that scope names can be only DEF function names.
Your own scopes are created automatically when you declare scope variable.
For example, you can write:

collected and edited by 'Dutchman' Ton Nillesen 15

SCR.WIDTH = SCREEN_WIDTH()
SCR.HEIGHT = SCREEN_HEIGHT()

This way you automatically create "SCR" scope. When you pause your program, all
variables are listed grouped by their scopes, so you will see:

SCR:
WIDTH = …
HEIGHT = …

This approach can help you organise variables into scopes for better program lay-
out.

Grouping arrays into records
Often arrays contain a lot of data with different identities assigned to certain indices.
During programming it becomes then difficult to remember which index is assigned
to a certain identity. To improve the readability, explicit identity-naming can be ap-
plied using arrays as scope variables arranged in a 'record' via a function definition.
An example is given in the following program which operates on the 'record' “User”:

' named indices
' ---- Presets
Users=4
OPTION BASE 1
' ---- initiate content
CALL User(Users) ' initiate arrays
FOR n=1 TO Users
 READ User.Name$(n)
 READ User.Age(n)
NEXT n
' ---- display content
TEXT CLEAR
PRINT "**** Users ****"
PRINT "Name","Age"
PRINT "—————————————————"
FOR n=1 TO Users
 PRINT User.Name$(n),User.Age(n)
NEXT n
END
' ===== Functions and Data =====
DEF User(n) ' organised as 'record'
 DIM Name$(n), Age(n)
END DEF
DATA "John",42,"Mary",24,"Iwan",33,"Katinka",22

16 Smart Basic Reference Manual © Mr. Kibernetik

2. Input & output
Audio-output is handled in a separate chapter: 9. Music, sound and speechon page
59.

2.1. Touch handling
Smart BASIC supports 11 simultaneous touches. Each touch is tracked individually
and does not depend on other touches, this means that one touch can be active
while other touches can appear and disappear at the same time. To distinguish
touches from each other they receive numbers from 0 to 10. Touch receives its
number as soon as it appears and keeps this number while it is active. Assigned
number is minimal from currently available numbers. There is command GET
TOUCH and functions TOUCH_X() and TOUCH_Y() to get touch coordinates. If
touch with specified number does not exist then returned coordinate value is -1. If
touch with specified number is currently active then its actual coordinates are re-
turned.
Note from the forum:

You use x = Touch_x(i) in which 'i' is the number of touch.
Total there can be 11 simultaneous touches, with touch numbers from 0 to
10. So, command x = Touch_x(0) means that you are asking x coordinate of
touch number 0. If you get x = -1 then this means that there is no touch with
this number.
What about touch numbers.
First touch gets number 0, so Touch_x(0) will give you proper x-coordinate of
first touch. If you keep touching and then second finger also touches the
screen (so now you get two simultaneous touches), then this new touch gets
number 1 and Touch_x(1) will give you x-coordinate of second touch. If you
release your first touch (touch number 0) then Touch_x(0) will return -1, but
Touch_x(1) will continue to give you valid x-coordinate of your second touch
(touch number 1) because it is still active. Any new touch gets smallest avail-
able number, so if you touch again then the new touch will be number 0.

Normally touches work only in graphics view.
Note from Rbytes on the forum:

The documentation for TOUCH commands says that they don't work in
text mode. But they do under special conditions, opening up new pos-
sibilities for user control on a TEXT screen.
The trick is to create a field on the TEXT screen. It can be as tiny as 1 x
1 points and located at a screen corner or entirely outside the visible
screen area (ie. made the field x coordinate a negative number). That
activates the whole screen for detecting touches!

GET TOUCH N AS X,Y
gets "x" and "y" coordinates of screen touch number [n] to variables [x] and [y]. If
there is no active touch with this number, [x] and [y] variables get value -1. First
touch gets number 0.

TOUCH_X (N)
returns "x" coordinate of screen touch number [n]. If there is no active touch with
this number, it returns -1.

collected and edited by 'Dutchman' Ton Nillesen 17

TOUCH_Y (N)
returns "y" coordinate of screen touch number [n]. If there is no active touch with
this number, it returns -1.

2.2. Input from keyboard or file

• Input from keyboard
INKEY$ ()
returns output from physical keyboard. Physical keyboard support should be turned
on (OPTION KEYBOARD command) for this function to operate.

INPUT variable, ..., variable
performs input of values for specified variables in a special input field at top of text
screen.

INPUT A, B$
You can specify additional inquiry before variable using ":" character:

INPUT "What is X?":X

User interface with INPUT command
In 'classic' implementations of BASIC the user types his response on INPUT directly
after the prompt. That type of input-request is still common practice in 'terminal'
mode for OSX and DOS and is also used in other recent Basic implementations.
In Smart Basic however the response on the INPUT command is required in a sep-
arate field at the top of the screen, which is rather clumsy for both the user and the
programmer.
• The attention of the user has to be attracted to the top of the screen.

Furthermore:
• The background of the input field does not change with the screen color.
• The prompt is less visible due to low contrast.
• The cursor is positioned before the prompt which is strange but acceptable.
• The prompt disappears on typing which is annoying and unacceptable if a series

of several variables is requested.
Input from keyboard can better be obtained via text input fields.
See subchapter 5.8 “Text Fields“ on page 34.

KEYBOARD_VISIBLE ()
returns 1 if screen keyboard is currently visible. Otherwise returns 0. This function
works only when the keyboard is solid (external) and is at the bottom of the screen.

OPTION KEYBOARD OFF

OPTION KEYBOARD ON
turns ON or turns OFF physical keyboard support. If support is ON but physical key-
board is absent then software keyboard appears automatically. By default is off.

• Input from file
FILE N$ INPUT X, Y$, ...
performs data input from file [n$] and stores values to specified variables [x,y$,...].
See more on input from file in chapter 6. “Files & folders“ on page 38

2.3. Built-in data
DATA [list of variables]

DATA 1, 2, 3, "ONE", "TWO", ...

18 Smart Basic Reference Manual © Mr. Kibernetik

not limited, data may contain expressions:
DATA 1+3, "One"&"num", 2, "Two"

Command DATA may appear more than once to store all necessary values. Values
in command DATA are local, they exist only for function where they were defined.

DATA_EXIST ()
returns 1 if data when using command READ are available. Otherwise it returns 0.

READ A, B$
reads to specified variables numeric or string values, stored in command DATA.

RESTORE
resets data counter for reading values from command DATA to the beginning of da-
ta in code.

RESTORE TO _LABEL_
resets data counter for reading values from command DATA which goes in code af-
ter label [_label_].

ON X RESTORE TO LABEL1, LABEL2, ...
the same as RESTORE TO, but if [x] = 1 then resets data counter to label [label1], if
[x] = 2 then resets data counter to label [label2], and so on.

2.4. Camera
ALBUM EXPORT F$
exports image or video file [f$] from smart BASIC to device camera roll.

ALBUM IMPORT F$
imports image or video file from device camera roll to smart BASIC file [f$].

Importing GIF-files
GIF files are not produced neither by iOS device nor by smart BASIC. That is why
their support by ALBUM commands is not available. GIF files however are recog-
nized and can be imported as JPG or PNG.
Notes from 'Ricardobytes' (http://nitisara.ru/forum/viewtopic.php?f=24&t=1585)
• If you specify ALBUM IMPORT "file.jpg", you can import any gif file and it will be

named as a jpg. If it has transparency, that will be lost. Only the first image of an
AnimGif will be converted. I assumed that the gif is actually converted to a .jpg,
but if I change the extender back to .gif, it can still be previewed and displayed in
smart Basic programs!

• If you specify ALBUM IMPORT "file.png", you can import any gif file and it will be
named as a PNG. If it has transparency, that will be retained. Only the first image
of an AnimGif will be converted. I assumed that the gif is actually converted to
a .png, but if I change the extender back to .gif, the image can still be previewed
and displayed in smart Basic programs!

• In both cases, the images are the same size as, and indistinguishable in quality
from, the original gifs.

CAMERA N$ AT BACK/FRONT PHOTO
CAMERA N$ AT BACK/FRONT VIDEO LOW/MEDIUM/HIGH
create camera [n$], connected to BACK or FRONT device camera for making
PHOTO or VIDEO recordings. Camera for video recording can have optional quality
parameter: LOW, MEDIUM or HIGH video quality. If parameter is not specified then
low quality is used.

http://nitisara.ru/forum/viewtopic.php?f=24&t=1585

collected and edited by 'Dutchman' Ton Nillesen 19

Examples of usage:
CAMERA "photocam" AT FRONT PHOTO
'creates camera for making photographs with front camera;
CAMERA "videocam" AT BACK VIDEO
'creates camera for making video recordings with back
camera;
CAMERA "videocam" AT BACK VIDEO HIGH
'creates camera for making video recordings with back
camera in high quality.

CAMERA N$ DELETE
deletes camera [n$].

CAMERA N$ RECORD F$
starts video recording with camera [n$] to file [f$] in MOV format.

CAMERA N$ SNAPSHOT F$
creates photo snapshot with camera [n$] and saves it to file [f$] in JPG format.
See chapter 7.3.6 “Draw figures“ on page 47 for handling stored images.

CAMERA N$ STOP
stops video recording with camera [n$].

CAMERA N$ VIEW S$
displays camera [n$] inside sprite [s$].

GET CAMERA N$ SIZE W,H
gets width and height of image from camera [n$] to numeric variables [w] and [h], in
points. If camera does not exist it returns [0, 0].

2.5. Phone
If the device supports making phone calls, then a phone call can be initiated in a
running program:

PHONE CALL N$
performs phone call to number [n$]. Device should support making phone calls.

PHONE CALL "83331234567"

2.6. Clipboard
Smart BASIC can work with iOS clipboard, but with important differences.
First difference is capability to store not only one but multiple amount of text and nu-
meric data in the clipboard. Usually new data replaces old data in the clipboard
when iOS application saves new data to the clipboard. Smart BASIC instead ap-
pends new data to the clipboard while keeping all previous clipboard data. Order of
reading data from the clipboard should be the same as order of writing data, be-
cause new data are appended to the end of the clipboard and data are read from
the beginning of the clipboard.
Second difference is that data is deleted from the clipboard when it is read.
Thus clipboard may serve not only for text exchange between smart BASIC and
other iOS applications, but also for data exchange between smart BASIC programs
which run each other, because it can store variable amount of text and numbers.

CLIPBOARD CLEAR
clears clipboard.

CLIPBOARD READ A, B$
reads numeric or string values from the clipboard to specified variables. See clip-

20 Smart Basic Reference Manual © Mr. Kibernetik

board specifications in preface.

CLIPBOARD WRITE A, B$
writes values of specified variables to the clipboard. See clipboard specifications in
preface.

CLIPBOARD_COUNT ()
returns number of values available in the clipboard. Check this value before reading
from the clipboard because attempt to read from empty clipboard rises an error.

CLIPBOARD_TYPE ()
returns type of next clipboard value available for reading:

0=undefined, 1=number, 2=string.

CLIPBOARD_TYPE (N)
returns type of [n]-th clipboard value available for reading. OPTION BASE affects
order number in this function.

2.7. Print
PRINT item p item p ...
prints a string on screen, where each item is an expression and each punctuation
mark p is either a comma or a semi-colon.
You can print constants and/or variables and or results of an expression.
Examples:

PRINT "Name ";NAME$
PRINT K$, X; Y, SQR(x^2+y^2)

Using "," character (comma) performs tabulated output. Using ";" character (semi-
colon) makes no separation between printed values (numeric values have trailing
space and may have leading space used for sign).
Each printed line is automatically finished with line feed. But if you don't need line
feed at the end, you may use ";" character at the end of PRINT command. For ex-
ample, these two commands will print "This is my text" in one line:

PRINT "This is ";
PRINT "my text"

If you need only line feed, you can use:
PRINT

TAB(x)
indicates output offset from beginning of line if you need custom tabulation:

PRINT TAB(5);TEXT$

TEXT CLEAR
clears text view.

• Format string
If you want to use custom format output for numeric values, you can specify format
string before variable using ":" separator. Format string uses "#" character for each
digit, "." character for decimal dot and "E" character for exponential output. You can
also use other characters in format string, and they will be present in output text.
Examples:

PRINT "## ###":12000
PRINT "#.##":1/3;"#.#E":1000
F$ = "#.###"
PRINT F$:X;F$:Y;F$:Z
PRINT “Large number: “;"### ### ###.##":12345*67890

collected and edited by 'Dutchman' Ton Nillesen 21

• Special characters
To print special characters like square root, you may use Unicode character codes
in CHR$() function. The following code will print the square root character:

PRINT CHR$(8730)
Character codes should be given as decimal coded. To use Unicode just convert it
to decimal. You can get Unicode character codes at http://unicode-table.com

About emoji's, by Ricardobytes
1. When using emoji in strings, some of the string operations don't work as
expected. The reason is that many emoji behave as though they were two
characters rather than one! Therefore if you want to check whether list item
T is checked or not, you may have to check the list array for LEFT$(N$(T),2)
and compare it to a string containing your emoji button. LEFT$(N$(T),1) will
not equal your emoji string if the emoji is interpreted as two characters.

2. Selecting an emoji from a string of characters by clicking and dragging is
a hit or miss operation. It may look as though your bounding box encloses
just the emoji you want to use, but strange things may happen. You may se-
lect more or less than your emoji and be haunted by strange ghost charac-
ters. The best way to use an emoji is to define it as a string like this:
E$="[type your emoji here]"

http://unicode-table.com/

22 Smart Basic Reference Manual © Mr. Kibernetik

3. Math functions

3.1. General operations and functions
Math functions in general can accept real and complex arguments.

Numeric math operations are: +, -, *, /, %, ^.
Operation % is a remainder of division, ^ is a power operation.

A = (2 ^ 3 + 1) * 2

Constant π
π can best be defined as constant:

pi=3.1415926535
π can also be calculated from trigonometric or complex functions, but than the
angle-units should be set to radians:

OPTION ANGLE RADIANS
pi=ARG(-1)

RANDOMIZE
initializes new sequence of values for RND() and RNDC() function.

RND (X)
returns random real number from 0 to [x], not including [x].
If [x] > 1 then this is an integer number. If 0 <= [x] <= 1 then this is a float number.
Although this is a sequence of random values, it is the same at each program run.
Use RANDOMIZE command to change the sequence.

RNDC (X)
Returns random complex number with real and imaginary components from 0 to [x],
not including [x]. Usage is identical to RND (X).

3.2. Complex numbers
A complex number is a number that can be expressed in the form x+ y∗i , where x
and y are real numbers and i is the imaginary unit, that satisfies the equation
i^2=−1. In the expression x+ y∗i is x the real part and y is the imaginary part of the
complex number.
In order to indicate that 'i' has to be interpreted as the imaginary unit rather than as
a variable, it should be entered in Smart Basic as '1i'. In the same way any number
can be made imaginary by attaching the 'i', e.g. 8i, 12.3i etc. A variable is made ima-
ginary by multiplying it with '1i'. So the expression z=x+ i∗y in Smart Basic should
be written as z=x+ 1i∗y .
A few examples with imaginary numbers and the corresponding output on screen:

PRINT "√-4 =";SQRT(-4)
PRINT "i^2=";1i^2
a=2+5i ! b=3+2i
PRINT "If a=";a;"and b=";b
PRINT "a+b=";a+b
PRINT "1i*a+1i*b=";1i*a+1i*b
PRINT "a*b=";a*b

A complex number can be viewed as a point or position vector in a two-dimensional
coordinate system called the complex plane. The numbers are conventionally plot-
ted using the real part as the horizontal component, and imaginary part as vertical.

collected and edited by 'Dutchman' Ton Nillesen 23

These two values used to identify a given complex number are therefore called its
Cartesian, rectangular, or algebraic form: z=x+ i∗y
This vector z can also be defined in terms of its magnitude r
and direction φ relative to the origin as expressed in the fol-
lowing formula: z=r∗(cos(φ)+ i∗sin(φ))
With Euler's formula ei∗φ=cos(φ)+ i∗sin (φ) that leads to

the complex number's polar form z=r∗ei∗φ →
in which: r is the absolute value or norm or modulus

φ is the angle or argument
By adjusting the length r and angle φ, we can write any
complex number in this way!
Multiplication by a complex number with r=1 which can be written as z=ei∗ϴ gives
a rotation by angle ϴ!

ARG (X)
returns argument of complex number [x].
OPTION ANGLE has its effect in this function.
With Euler's identity eiπ=−1 , the value of π can be calculated as:

OPTION ANGLE RADIANS
pi=ARG(-1)

ABS(X)
If X is a complex number, then ABS(X) returns the absolute value or modulus or

magnitude. For complex number z=x+ i∗y the modulus |z| equals ∣z∣=√x2
+ y2

IMAG (X)
returns imaginary component of complex number [x].

REAL (X)
returns real component of complex number [x].

RNDC (X)
Returns random complex number with real and imaginary components from 0 to [x],
not including [x]. If [x] > 1 then this is an integer number. If 0 <= [x] <= 1 then this is
a floating point number. Although this is a sequence of random values, it is the
same at each program run. Use RANDOMIZE command to change the sequence.

SGNC (X)

SIGNC (X)
return sign of imaginary part of complex number [x]: -1 if [x] < 0, 0 if [x] = 0, and
1 if [x] > 0.

Archimedean spiral in polar coordinates
An example of handling complex numbers in polar coordinates is the following code
to generate an Archimedean spiral.
An Archimedean spiral describes the path of a point moving away from a fixed point
with a constant angular speed. The distance r to the fixed point can be described in
polar coordinates (r,φ)by the equation r=a+b*φ with real numbers a and b. The
parameter 'a' determines the starting point of the spiral while 'b' controls the dis-
tance between successive turnings.

0
Re

Im

x

r

φ

zi∗y

24 Smart Basic Reference Manual © Mr. Kibernetik

'Archimedean spiral, in polar coordinates
' --- constants
dphi=0.1 ' angular increment
a=0 ' starting point on real axis
b=100' amplitude parameter
GET SCREEN SIZE sw,sh
x0=sw/2 ! y0=sh/2
size=MIN(x0,y0)
' --- initiate graphics
GRAPHICS
GRAPHICS CLEAR 1,1,0.5
DRAW COLOR 1,0,0
DRAW SIZE 2
' --- initiate
DRAW TO x0+a,y0
' --- loop
DO
 r=a+b*phi
 z=r*EXP(1i*phi)
 DRAW LINE TO x0+REAL(z),y0-IMAG(z)
 phi+=dphi
UNTIL ABS(z)>size
END

3.3. Arithmetic
ABS (X)
returns absolute value of [x].

CEIL (X)
returns smallest integer not less than [x].

DEC (H$)
returns decimal representation of hexadecimal number, written as a string [h$].
Number is treated as unsigned integer.

PRINT DEC("ABCD")

EXP(X)
returns exponential of [x].
The exponential function is the function e^x, where e is the “Euler number” (approx-
imately 2.718281828) with the characteristic that the function e^x is its own derivat-
ive. The function is often, as in Smart Basic, written as exp(x)

FLOOR (X)
returns largest integer not greater than [x].

FRACT (X)
returns fractional part of number [x].

HEX$ (N)
returns hexadecimal representation of integer number [n]. Number should not be
negative or complex.

INT (X)
returns integer nearest to [x].
Examples for CEIL, FLOOR and INT:

CEIL(-1.8)=-1 FLOOR(-1.8)=-2 INT(-1.8)=-2
CEIL(-1.2)=-1 FLOOR(-1.2)=-2 INT(-1.2)=-1
CEIL(1.2)= 2 FLOOR(1.2)= 1 INT(1.2)= 1

collected and edited by 'Dutchman' Ton Nillesen 25

CEIL(1.8)= 2 FLOOR(1.8)= 1 INT(1.8)= 2
INT(-1.5)=-2 INT(1.5)= 2

INTEG (X)
returns integral part of number [x].

LN (X) or LOG (X)
returns natural logarithm of [x]. The natural logarithm of a number x is the power to
which the “Euler number” 'e' would have to be raised to equal x. For example:
log(7.389...) is 2, because e^2=7.389....

LOG (X, Y)
returns logarithm of [x] to base [y].

LOG2 (X)
returns binary logarithm of [x].

LOG10 (X)
returns decimal logarithm of [x].

MAX (X, Y)
returns maximum value of [x] and [y]. This function accepts only real arguments.

MIN (X, Y)
returns minimum value of [x] and [y]. This function accepts only real arguments.

RND (X)
returns random real number from 0 to [x], not including [x]. If [x] > 1 then this is an
integer number. If 0 <= [x] <= 1 then this is a float number.
Although this is a sequence of random values, it is the same at each program run.
Use RANDOMIZE command to change the sequence.

SGN (X) or SIGN (X)
return sign of real part of number [x]: -1 if [x] < 0, 0 if [x] = 0, 1 if [x] > 0.

SQR (X) or SQRT (X)
returns square root of [x].

3.4. Trigonometry
OPTION ANGLE DEGREES

OPTION ANGLE RADIANS
make all trigonometric functions to use degrees/radians as their values. Other BA-
SIC functions and commands which use angles as their parameters are also af-
fected. Default is radians.

ACOS (X)
returns arccosine of [x]. If argument is real then command OPTION ANGLE has its
effect in this function.
Smart basic has no built-in constant for the value of π. Use e.g.:

PI=ACOS(-1)

ACOSH (X)
returns hyperbolic arccosine of [x]. If argument is real then command OPTION
ANGLE has its effect in this function.

ASIN (X)
returns arcsine of [x].

26 Smart Basic Reference Manual © Mr. Kibernetik

ASINH (X)
returns hyperbolic arcsine of [x]. If argument is real then command OPTION ANGLE
has its effect in this function.

ATN (X)

ATAN (X)
returns arctangent of [x]. If argument is real then command OPTION ANGLE has its
effect in this function.

ATAN2 (Y, X)
returns arctangent of [y]/[x], from -π to +π. If arguments are real then command OP-
TION ANGLE has its effect in this function.

ATANH (X)
returns hyperbolic arctangent of [x]. If argument is real then command OPTION
ANGLE has its effect in this function.

COS (X)
returns cosine of [x].

COSH (X)
returns hyperbolic cosine of [x].

SIN (X)
returns sine of [x].

SINH (X)
returns hyperbolic sine of [x].

TAN (X)
returns tangent of [x].

TANH (X)
returns hyperbolic tangent of [x].

3.5. Logic
AND (X, Y)
returns bitwise AND of [x] and [y].

BIT (X, N)
returns [n]-th bit of [x]. Bit numbers start from 0. If argument is complex then only re-
al part is used.

EVEN (X)
returns 1 if real value [x] is even. Otherwise returns 0.

ODD (X)
returns 1 if real value [x] is odd. Otherwise returns 0.

OR (X, Y)
returns bitwise OR of [x] and [y].

XOR (X, Y)
returns bitwise XOR of [x] and [y].

collected and edited by 'Dutchman' Ton Nillesen 27

4. String functions
ASC (A$)
returns ASCII value of first character in string [a$].

ASC (A$, N)
returns ASCII value of [n]-th character in string [a$]. Command OPTION BASE has
its effect in this function.

CAPSTR$ (A$)
returns uppercase string [a$].

CHR$ (N)
converts ASCII value [n] to character.
To print special characters like square root, you may use Unicode character codes
in CHR$() function. The following code will print the square root character:

PRINT CHR$(8730)
Character codes should be given decimal coded. To use Unicode just convert it to
decimal. You can get Unicode character codes at http://unicode-table.com

INSTR (STR$, SUBSTR$, N)
returns character index in string [str$], from which string [substr$] begins. Search
starts from [n]-th character of string [str$]. If string [str$] does not contain string
[substr$] then returns -1. Search is case-sensitive. Command OPTION BASE has
its effect in this function.

LEN (X$)
returns length of string [x$].

LEFT$ (A$, N)
returns [n] characters from the left side of string [a$].

LOWSTR$ (A$)
returns lowercase string [a$].

LTRIM$ (A$)
returns string [a$] without spaces at the left side of the string.

MID$ (A$, X)
returns substring of string [a$] which starts at index [x]. Command OPTION BASE
has its effect in this function.

MID$ (A$, X, Y)
returns substring of string [a$] which starts at index [x] and has length [y]. Com-
mand OPTION BASE has its effect in this function.

MID$ (A$, X, Y, B$)
returns string [a$], in which the part, starting at index [x] and with length [y], is re-
placed with string [b$]. Command OPTION BASE has its effect in this function.

REVERSE$ (A$)
returns string [a$] in reverse order.

RIGHT$ (A$, N)
returns [n] characters from the right side of string [a$].

RTRIM$ (A$)
returns string [a$] without spaces at the right side of the string.

http://unicode-table.com/

28 Smart Basic Reference Manual © Mr. Kibernetik

SPLIT A$ TO M$,N WITH S$
splits string [a$] to components using separator - string [s$] and stores result to
one-dimensional string array [m$]. Array size is stored to numeric variable [n], if it is
used. Parameter [n] is optional. Separator string [s$] contains characters, which are
used to split string [a$]. Array [m$] does not contain empty strings.
Example:

SPLIT "1,2,3&4" TO pieces$,n WITH ",&"

SPLITE A$ TO M$,N WITH S$
(SPLIT Empty) the same as SPLIT command, but array [m$] can contain empty
strings.

STR$ (N, F$)
converts number [n] to string using format string [f$]. Format string is the same as in
PRINT command.
Example in Graphics mode:

DRAW TEXT STR$(12345*67890,"### ### ###.##") AT 0,0

SUBSTR$ (A$, X, Y)
returns substring of string [a$] which starts at index [x] and ends at index [y]. Com-
mand OPTION BASE has its effect in this function.

TRIM$ (A$)
returns string [a$] without spaces at both sides of the stringSTR$ (N)
converts number [n] to string. Note that in smart BASIC number to string and string
to number conversion is performed automatically where it is possible.

UNIQUE_STR$ ()
returns unique string. One of possible implementations: for generating temporary
file names which should not accidentally coincide with any of existing file names.

VAL (X$)
converts string [x$] to number. Note that in smart BASIC number to string and string
to number conversion is performed automatically where it is possible.

5. Interface objects
Interface objects are the communication tool between a user and an app. They
convey a particular action or intention to the app through user interaction, and
can be used to manipulate content, provide user input and output, navigate
within an app, or execute other pre-defined actions.
The available objects in Smart Basic are:

• Buttons: activate actions by a tap
• Switches: lets the user turn an option on and off
• Sliders: enable users to interactively modify some adjustable value
• List panels: for selecting a specific item from a list
• Text Fields: allows input or output of a single or multiple lines of text
• Browsers: allows output in HTML format

About object creation
Interface object name is a string and it cannot be empty - it is used in commands
and functions to identify this specific object by its name. Object name is case sensi-
tive.
It is correct to re-create object with the same name if you need to change some of
its attributes. But special commands often exist for this purpose. For example, to

collected and edited by 'Dutchman' Ton Nillesen 29

change text in text input field you can use command FIELD SET TEXT:
FIELD n$ SET TEXT "New text"

5.1. About pages
Pages are nameable, moveable, resizeable zones for interface objects grouping
and placement.
Every created interface object belongs to currently active page. Pages can be
created and manipulated by PAGE commands. Default page has empty name "".
This default page will not be created until it is needed. A new page is default cre-
ated with transparent background and fullscreen size. Size and color can be cus-
tomized.
The active page covers other pages which are located below. To copy text from text
window or to get info from buttons, lists or text fields, you will need to clear access
to it by hiding all blocking pages, even if their background is transparent.
The program 'Panel demo' on the forum gives an example of several pages used
for graphics, text, lists and buttons displayed simultaneously.
You'll find it at: http://nitisara.ru/forum/viewtopic.php?f=20&t=811

PAGE N$ ALPHA X
sets alpha of page [n$] to value [x]. Valid values are from 0 to 1.

PAGE N$ AT X,Y
sets coordinates of page [n$] to point [x,y].

PAGE N$ COLOR R,G,B,A
sets color of page [n$] to value with red [r], green [g], blue [b] and alpha [a] compon-
ents. Valid values are from 0 to 1.

PAGE N$ FRAME X,Y, W,H
sets coordinates of page [n$] to point [x,y], width to value [w] and height to value [h].

PAGE N$ HIDE
hides page which name is [n$].

PAGE N$ SET
makes page [n$] active. If such page does not exist then it is created.

PAGE N$ SHOW
shows previously hidden page which name is [n$].

5.2. Presets
SET BUTTONS CUSTOM
SET BUTTONS DEFAULT
Set newly created buttons to be of "custom" or "default" type.
Custom button type means that when button is created its title color and opacity
are defined by DRAW COLOR and alpha, also its background color and opacity are
defined by FILL COLOR and alpha.
Default button type means that buttons have standard appearance.
The button-size WxH is: (20+text-length)x(12+text-height)

SET BUTTONS FONT DEFAULT
sets font name and size of newly created buttons to default values.

SET BUTTONS FONT NAME N$
sets font name of newly created buttons to [n$].

http://nitisara.ru/forum/viewtopic.php?f=20&t=811

30 Smart Basic Reference Manual © Mr. Kibernetik

SET BUTTONS FONT SIZE X
sets font size of newly created buttons to [x].

SET LISTS CUSTOM

SET LISTS DEFAULT
set newly created lists to be of "CUSTOM" or "DEFAULT" type.
Custom list type means that when list is created its text color and opacity are
defined by DRAW COLOR and alpha, also its background color and opacity are
defined by FILL COLOR and alpha.
Default list type means that lists have standard appearance.

SET LISTS FONT DEFAULT
sets font name and size of newly created lists to default values.

SET LISTS FONT NAME N$
sets font name of newly created lists to [n$].

SET LISTS FONT SIZE X
sets font size of newly created lists to [x].

SET TOOLBAR OFF
SET TOOLBAR ON
turns OFF and turns ON visibility of top control toolbar. It also affects position of
main graphics window on the screen.

TOOLBAR_VISIBLE ()
returns 1 if top control toolbar is visible. Otherwise it returns 0.

5.3. Handling existing objects
5.3.1 Listings of available objects

LIST BUTTONS TO A$,N
saves list of existing buttons' names to string array [a$] and size of returned array to
numeric variable [n].

LIST FIELDS TO A$,N
saves list of existing text fields' names to string array [a$] and size of returned array
to numeric variable [n].

LIST LISTS TO A$,N
saves list of existing lists' names to string array [a$] and size of returned array to
numeric variable [n].

LIST SLIDERS TO A$,N
saves list of existing sliders' names to string array [a$] and size of returned array to
numeric variable [n].

LIST SWITCHES TO A$,N
saves list of existing switches' names to string array [a$] and size of returned array
to numeric variable [n].

5.3.2 Changing and testing visibility
BUTTON N$ HIDE
hides button which name is [n$].

BUTTON N$ SHOW
shows previously hidden button which name is [n$].

collected and edited by 'Dutchman' Ton Nillesen 31

BUTTON_VISIBLE (N$)
returns 1 if button with name [n$] is shown, otherwise it returns 0.

FIELD N$ DESELECT
deactivates text input field which name is [n$].

FIELD N$ HIDE
hides text field which name is [n$].

FIELD N$ SELECT
activates text input field which name is [n$]. If text input field contains text then this
text will be selected.

FIELD N$ SELECT X
it positions cursor in text input field which name is [n$] after [x] characters.

FIELD N$ SELECT X,Y
it positions cursor in text input field which name is [n$] after [x] characters and se-
lects [y] characters.

FIELD N$ SHOW
shows previously hidden text input field which name is [n$].

FIELD_VISIBLE (N$)
returns 1 if text input field with name [n$] is shown, otherwise it returns 0.

LIST N$ HIDE
hides list which name is [n$].

LIST N$ SHOW
shows previously hidden list which name is [n$].

LIST_VISIBLE (N$)
returns 1 if list with name [n$] is shown, otherwise it returns 0.

SLIDER N$ HIDE
hides slider which name is [n$].

SLIDER N$ SHOW
shows previously hidden slider which name is [n$].

SLIDER_VISIBLE (N$)
returns 1 if slider with name [n$] is shown, otherwise it returns 0.

SWITCH N$ HIDE
hides switch which name is [n$].

SWITCH N$ SHOW
shows previously hidden switch which name is [n$].

SWITCH_VISIBLE (N$)
returns 1 if switch with name [n$] is shown, otherwise it returns 0.

TOOLBAR_VISIBLE ()
returns 1 if top control toolbar is visible. Otherwise it returns 0.

32 Smart Basic Reference Manual © Mr. Kibernetik

5.3.3 About sizing for different devices
Info from the forum:

About sizing of buttons
From the forum:

Actually automatic button size equals: (20 + text_length) x (12 + text_height)
Field does not resize automatically after text or font size is changed.
Automatic size is set only when field is created and field size is not specified.

Resizing after changing text or font size could be done as in the following sample
code:

f$="Helvetica"
fs=30
t$="This is my text"
DRAW FONT NAME f$
DRAW FONT SIZE fs
w=TEXT_WIDTH(t$)+16 'offset 14 is minimum width 'border'
h=TEXT_HEIGHT(t$)+8 'offset 8 can be reduced to zero
FIELD 0 AT 10,50 SIZE w,h
FIELD 0 FONT NAME f$
FIELD 0 FONT SIZE fs
FIELD 0 TEXT t$
End 'of sample code

5.4. Buttons
BUTTON N$ DELETE
Deletes button which name is [n$].

BUTTON N$ SET TEXT T$
sets text [t$] for button with name [n$].

BUTTON N$ TEXT T$ AT X,Y SIZE W,H
creates button with name [n$] and text [t$] at point [x,y] with width [w] and height [h].
Parameter SIZE is optional, if it is not set then button is autosized.

BUTTON_PRESSED (N$)
Returns 1 if button with name [n$] was pressed, otherwise it returns 0.

by ricardobytes » Sun Jun 05, 2016
To explain about my screen sizing code. It uses my iPad Air as the standard
screen size, 1024 x 768 points, since I do all my development on it.
The first thing I do is get the screen width sw and screen height sh of the device
that is running the code.
The variables ratw and rath are short for "ratiowidth" and "ratioheight" and are
calculated by dividing the current device's width and height by the iPad's width
and height. These are usually fractions, since the screens of most other iOS
devices (iPhones and iPods) will be smaller.
Then the sizes and positions of every graphic or interface object are multiplied by
these two ratios, and usually the resulting display will fit nicely on the smaller
device. Adjusting font sizes can be tricky. I find that in most cases, multiplying the
font size by ratw usually works.

collected and edited by 'Dutchman' Ton Nillesen 33

SET BUTTONS CUSTOM

SET BUTTONS DEFAULT
Set newly created buttons to be of "custom" or "default" type.
Custom button type means that its title color and opacity are defined by draw color
and alpha, also its background color and opacity are defined by fill color and alpha.
Default button type means that buttons have standard appearance.

5.5. Switches
SWITCH N$ DELETE
deletes switch which name is [n$].

SWITCH N$ SET STATE K
sets state [k] for switch with name [n$]. If [k] = 0 then switch is off, otherwise it is on.

SWITCH N$ STATE K AT X,Y
creates switch with name [n$] at point [x,y] with state [k]. If [k] = 0 then switch is off,
otherwise it is on.

SWITCH_CHANGED (N$)
returns 1 if state of switch with name [n$] was changed. Otherwise it returns 0.

SWITCH_STATE (N$)
returns state of switch with name [n$].
On = 1, off = 0.

5.6. Sliders
SLIDER N$ DELETE
deletes slider with name [n$].

SLIDER N$ SET VALUE K
sets value [k] for slider with name [n$]. Valid values for [k] are from 0 to 1.

SLIDER N$ VALUE K AT X,Y SIZE S ANGLE A
creates slider with name [n$], value [k], at point [x,y], with size [s] and at an angle
[a] to horizontal direction. Valid values for [k] are from 0 to 1. Parameter ANGLE is
optional. Command OPTION ANGLE affects this command.

SLIDER_CHANGED (N$)
returns 1 if value of slider with name [n$] was changed. Otherwise it returns 0.

SLIDER_VALUE (N$)
returns value of slider with name [n$].

5.7. List panels
LIST N$ DELETE
deletes list with name [n$].

LIST N$ HIDE
hides list which name is [n$].

LIST N$ SELECT K
selects row with number [k] in list with name [n$]. To clear selection, set row number
to -1. OPTION BASE command affects this command.

LIST N$ SHOW
shows previously hidden list which name is [n$].

34 Smart Basic Reference Manual © Mr. Kibernetik

LIST N$ TEXT M
sets contents of list with name [n$] equal to contents of one-dimensional array [m].

LIST N$ TEXT M AT X,Y SIZE W,H
creates list with name [n$], with contents of one-dimensional array [m], at point [x,y]
and with size [w,h].
SET LISTS command affects appearance of newly created lists.

LIST_SELECTED (N$)
returns number of selected row in list with name [n$]. If nothing is selected then re-
turns -1. OPTION BASE command affects this function.

SET LISTS CUSTOM

SET LISTS DEFAULT
set newly created lists to be of "CUSTOM" or "DEFAULT" type.
Custom list type means that when list is created its text color and opacity are de-
fined by draw color and alpha, also its background color and opacity are defined by
fill color and alpha.
Default list type means that lists have standard appearance.

5.8. Text Fields
Text fields can be used for input and output of text.

Some notes on user interface with text input fields
User interface with the INPUT command (in text view) is rather clumsy and primit-
ive. See “User interface with INPUT command ” on page 17.
The usage of text input fields gives a good alternative:

In Smart Basic no function is available to determine the current screen-position
in text view. In textfields however the cursor-position can be derived from the
command FIELD_CURSOR_POS(). Using that command an input-field can be
realised in which the prompt is 'safe', i.e. it can not be overwritten.

The following code gives an example of input-fields with 'safe' prompts:
'Inline Input Field
n=1
DO
 Prompt$="Request "&STR$(n,"#")&": "
 Field$="In_"&STR$(n,"#")
 Answer$=Input$(10,75+n*25,400,22,Field$,Prompt$)
 PRINT "Input";n;"=";Answer$
n+=1
until n>3 OR Answer$=""
END

DEF Input$(x,y,w,h,Field$,Prompt$)
FIELD Field$ AT x,y SIZE w,h
FIELD Field$ FONT SIZE h-6
CALL InputPreset(Field$)
FIELD Field$ SELECT
prompt=LEN(Prompt$)
DO
 IF FIELD_CURSOR_POS(Field$)<prompt THEN FIELD Field$ TEXT
Prompt$
 SLOWDOWN
UNTIL FIELD_CHANGED(Field$)
Txt$=FIELD_TEXT$(Field$)

collected and edited by 'Dutchman' Ton Nillesen 35

T$=RIGHT$(Txt$,LEN(Txt$)-prompt)
RETURN T$
END DEF

DEF InputPreset(name$)
FIELD name$ BACK COLOR 0,1,0
FIELD name$ FONT NAME "Verdana"
FIELD name$ FONT COLOR 0,0,1
END DEF

FIELD N$ BACK ALPHA X
sets background alpha of text field which name is [n$] to value [x]. Valid values are
from 0 to 1.

FIELD N$ BACK COLOR R,G,B
sets background color of text field which name is [n$] to value with red [r], green [g]
and blue [b] components. Valid values are from 0 to 1.

FIELD N$ DELETE
deletes text field which name is [n$].

FIELD N$ DESELECT
deactivates text field which name is [n$].

FIELD N$ FONT ALPHA X
sets font alpha of text field with name [n$] to value [x]. Valid values are from 0 to 1.

FIELD N$ FONT COLOR R,G,B
sets font color of text field which name is [n$] to value with red [r], green [g] and
blue [b] components. Valid values are from 0 to 1.

FIELD N$ FONT NAME T$
sets font name of text field which name is [n$] to value [t$].

FIELD N$ FONT SIZE S
sets font size of text field which name is [n$] to value [s].

FIELD N$ SELECT
activates text input field which name is [n$]. If text input field contains text then this
text will be selected.

FIELD N$ SHOW
shows previously hidden text field which name is [n$].

FIELD N$ TEXT A$
sets text [a$] for text field with name [n$].

FIELD N$ TEXT A$ AT X,Y SIZE W,H ML RO
creates text field with name [n$] and text [a$] at point [x,y] with width [w] and height
[h]. Parameter ML (multi-line) is optional, if it is used then text field will be multi-line.
Parameter RO (read-only) is optional, if it is used then text field is read-only. Para-
meter TEXT is optional, if it is not set then text field is created empty. Parameter
SIZE is optional, if it is not set then text field is autosized.

FIELD_CHANGED (N$)
returns 1 if user pressed Enter in input field with name [n$], otherwise it returns 0.

FIELD_CURSOR_POS (N$)
returns position of cursor in text input field with name [n$].

36 Smart Basic Reference Manual © Mr. Kibernetik

FIELD_CURSOR_SEL (N$)
returns number of selected characters in text input field with name [n$].

FIELD_TEXT$ (N$)
returns text of input field with name [n$].

5.9. Browsers
Browser commands refer to the current page. By multiple page usage, several
browsers can be created and hidden or displayed.
HTTP communication is described in chapter 10. “Networking” on page 65.

BROWSER N$ DELETE
deletes browser [n$].

BROWSER N$ URL A$ AT X,Y SIZE W,H
creates browser with name [n$] at point [x,y] with width [w], height [h] and loads
web page with URL [a$]. Parameter URL is optional.
Example:

BROWSER "n" URL "http://nitisara.ru" AT 0,0 SIZE
SCREEN_WIDTH(),SCREEN_HEIGHT()

HTML format-tags can be used to format text in the browser.
Example:

top$="<center><h3>Text Panel</h3></center>"
msg1$="Some text

Written with "
msg2$="HTML format and styling tags"
BROWSER “panel” SET TEXT top$&msg1$&msg2$

Info on tags can be found at http://www.w3schools.com/tags/
BROWSER N$ DELETE
deletes browser [n$].

BROWSER N$ TEXT T$ URL A$
sets contents of web page in browser [n$] as string [t$]. Parameter URL is optional,
it is used to specify URL of web page if its contents is address-dependent.
This command, without parameter URL, can be used to display text (JavaScript
string) in a browser 'window' for e.g. messages or help-info.
Example:

graphics
graphics clear
browser 0 at 30,30 size 120,300
t$="My browser
with multi-line text"
browser 0 set text t$

BROWSER N$ URL A$
loads web page with URL [a$] in browser [n$].

BROWSER N$ URL A$ AT X,Y SIZE W,H
creates browser with name [n$] at point [x,y] with width [w], height [h] and loads
web page with URL [a$]. Parameter URL is optional.
Example:

BROWSER "n" URL "http://nitisara.ru" AT 0,0 SIZE
SCREEN_WIDTH(),SCREEN_HEIGHT()

http://www.w3schools.com/tags/

collected and edited by 'Dutchman' Ton Nillesen 37

BROWSER_TEXT$ (N$, T$)
returns contents of current web page in browser [n$] using JavaScript string [t$].
Example:

BROWSER "n" URL "http://apple.com" AT 0,0 SIZE 0,0
PRINT "URL: " & BROWSER_TEXT$("n", "document.baseURI")
PRINT "Number of images: " & BROWSER_TEXT$("n",
"document.images.length")
PRINT "First image: " & BROWSER_TEXT$("n",
"document.images[0].src")

SET BROWSERS NORMAL
SET BROWSERS SCALED
set page display mode for newly created browsers. If NORMAL then browser loads
page non-scaled, if SCALED then browser scales loaded page to fit browser win-
dow.

About the size of fields and browsers
Input from the forum

by rbytes, May 2017
… Even though the screen is of a fixed dimension for each device (e.g. my iPad
has 1024 x 768 points or 2048 x 1536 pixels), when you create certain interface
objects, they can be much taller than the screen. So far I have tested pages,
fields and browsers. I haven't found the absolute limit yet, but so far I have cre-
ated interface objects 20,000 points high! Then by varying the y value for the top
of the object using a loop, I can scroll it upward to view all of it on the screen. …

… I have now tested creating a super-wide page and browser and scrolling them
sideways. …

… I have tested it with a page and browser 26 times the width of the screen and
they work fine. There is a slight delay and flash when they are created, but they
are stable after that.

38 Smart Basic Reference Manual © Mr. Kibernetik

6. Files & folders
File commands can be divided in two sets: simple and advanced.
Simple commands are FILE PRINT, FILE INPUT and FILE RESET. They are similar
to PRINT, DATA, READ and RESTORE commands, but using files. They perform
text data output to file and reading data from file. Simple commands do not change
file pointer and do not depend on file pointer.
All other file commands and functions belong to advanced set. They perform byte
level access to files, they use file pointers, can detect end of file and have other
possibilities.
File pointer changes its position automatically, you do not need to change it manu-
ally after each file command.

6.1. Current, parent and root directory
File names are relative to current directory.
If you need to specify current directory, you may use empty name "" or single dot
name ".". If you need to specify parent directory you may use double dot name "..".
If you need to specify root directory you may use "/".
Examples:

DIR "" LIST FILES a$,b
DIR "." LIST FILES a$,b
DIR ".." LIST FILES a$,b
DIR "/" LIST FILES a$,b

Current directory is initially set to a folder where you run your program, but it can be
changed with command DIR SET.

CURRENT_DIR$ ()
returns current directory.

6.2. File writing options
OPTION FILEMODE INSERT

OPTION FILEMODE OVER
Set file writing functions into insert or overwrite mode. This affects how data is writ-
ten to the file. In insert mode file writing functions insert new data at position of file
pointer, shifting existing data so nothing is overwritten. In overwrite mode file writing
functions overwrite existing data. Default is overwrite mode.

6.3. Directory commands and functions
CURRENT_DIR$ ()
returns current directory.

DIR N$ COPY M$
copies directory [n$] with all its contents to folder [m$].

DIR N$ CREATE
creates directory [n$]. If necessary, all intermediate folders are also created.

DIR N$ DELETE
deletes directory [n$] with all its contents. You cannot delete current directory, but if
you want to delete it then change current directory and specify proper name of dir-
ectory to be deleted.

DIR N$ LIST DIRS A$, B
saves list of folder names in directory [n$] to single-dimensional string array [a$].

collected and edited by 'Dutchman' Ton Nillesen 39

Number of folders is saved to numeric variable [b].
List of folders is alphabetically sorted.
If array [a$] was declared earlier then its size is changed (increased or decreased)
to store list of folders.
If array was not declared before then it is automatically created with size equal to
number of folders. Size of array [a$] is stored to variable [b].

DIR N$ LIST FILES A$, B
saves list of file names in directory [n$] to single-dimensional string array [a$]. Num-
ber of files is saved to numeric variable [b].
List of files is alphabetically sorted.
If array [a$] was declared earlier then its size is changed (increased or decreased)
to store list of files.
If array was not declared before then it is automatically created with size equal to
number of files. Size of array [a$] is stored to variable [b].

DIR N$ RENAME M$
renames directory [n$] to folder [m$].

DIR N$ SET
sets current directory to [n$].

6.4. File commands and functions
DATA_EXIST (N$)
returns 1 if data in file [n$] when using command FILE INPUT are available. Other-
wise it returns 0.

FILE N$ APPEND D$
appends contents of file [d$] to the end of file [n$]. This command does not depend
on current file pointers and does not change them.

FILE N$ COPY D$
copies specified file [n$] to file [d$].

FILE N$ DELETE
deletes specified file [n$].

FILE N$ INPUT X, Y$, ...
performs text data input from file [n$] and stores values to specified variables
[x,y$,...]. This command is similar to READ command, but using data contained in
file. This command does not change file pointer and also does not depend on posi-
tion of file pointer. Resetting input to the start of file should be done with the com-
mand FILE N$ RESET. Function DATA_EXIST(n$) may be useful when using this
command. Text data in file should be separated by spaces or tabs. Complex strings
should be used in quotes "".

FILE N$ PRINT ...
prints specified data into file [n$]. Parameters [...] are similar to parameters of
PRINT command.
This command does not change file pointer and also does not depend on position of
file pointer.
This command is similar to PRINT command, but using file for text output. It always
adds text to the end of file.

40 Smart Basic Reference Manual © Mr. Kibernetik

FILE N$ READ X
reads byte (value 0..255) from file [n$] and stores it to variable [x]. If reading after
end of file was reached, variable receives value of -1.
It is possible to specify several variables to read multiple bytes:

FILE n$ READ x,y,...

FILE N$ READDIM M
reads bytes in file [n$] to one-dimensional numeric array [m]. Size of array [m]
changes to number of read bytes.

FILE N$ READDIM M, N
reads bytes in file [n$] to one-dimensional numeric array [m], and number of read
bytes is stored to numeric variable [n].
Size of array [m] changes to number of read bytes.

FILE N$ READDIM M, N, K
reads [k] bytes from file [n$] to one-dimensional numeric array [m], and number of
actually read bytes is stored to numeric variable [n]. Size of array [m] changes to
number of read bytes.

FILE N$ READLINE X$
reads string line from file [n$] and stores it to variable [x$]. Carriage return is not
stored in the string. It is possible to specify several variables to read multiple string
lines:

FILE n$ READLINE x$,y$,...

FILE N$ RENAME D$
renames specified file [n$] to new name [d$]. File pointer of file with new name is
retained from file with old name.

FILE N$ RESET
resets file [n$]. After reset, FILE INPUT command starts reading data from the be-
ginning of file.
This command does not change file pointer. FILES RESET command is for reset-
ting FILES INPUT command only.
This command is similar to RESTORE command, but using data contained in file.

FILE N$ SETPOS X
sets current position of file pointer for file [n$] to value [x].
If the filepointer x in "FILE f$ SETPOS x" is past the end of the actual file size, then
the filepointer is set to the end of the file.

FILE N$ TRIM
deletes all data after current position of file pointer in file [n$]. It is possible to specif-
y file pointer value [x] after which data will be deleted:

FILE n$ TRIM x

FILE N$ WRITE X
writes byte (value 0..255) from variable [x] to file [n$].
It is possible to specify several variables to write multiple bytes:

FILE n$ WRITE x,y,...

FILE N$ WRITEDIM M
writes contents of one-dimensional numeric array [m] as bytes to file [n$]. Array [m]
must contain only values from 0 to 255.

FILE N$ WRITEDIM M, N
writes [n] elements of one-dimensional numeric array [m] as bytes to file [n$]. Array

collected and edited by 'Dutchman' Ton Nillesen 41

[m] must contain only values from 0 to 255.

FILE N$ WRITEDIM M, N, K
writes [n] elements of one-dimensional numeric array [m] starting with element num-
ber [k] as bytes to file [n$]. Array [m] must contain only values from 0 to 255. Com-
mand OPTION BASE has its effect on this command.

FILE N$ WRITELINE X$
writes string from variable [x$] to file [n$]. Carriage return is automatically added to
the string.
It is possible to specify several variables to write multiple string lines:

FILE n$ WRITELINE x$,y$,...
If you need to write string line without adding carriage return at the end, you can
use ";" separator after variable, for example:

FILE n$ WRITELINE x$;
FILE n$ WRITELINE x$;y$;

FILE_END (N$)
returns 1 if file pointer of file [n$] is currently at the end of file. Otherwise it returns 0.

FILE_EXISTS (N$)
returns 1 if file or directory with name [n$] exists. Otherwise it returns 0.

FILE_POS (N$)
returns current position of file pointer for file [n$].

FILE_SIZE (N$)
returns size of file [n$], in bytes. On error returns -1.

6.5. Compression and decompression
GUNZIP Z$ TO F$
unpacks file [z$], which was compressed with DEFLATE algorithm, and saves result
to file [f$].

GZIP F$ TO Z$
packs file [f$] using DEFLATE algorithm and saves result to file [z$].

7. Display on screen
For display on screen a choice has to be made between text view or graphics view.
Text view is the default mode. In general its use will be limited to the display of text
handling or the result of calculations. Contrary with graphics view however, it
doesn't need preset of display options and is ready for use.

7.1. Screen characteristics
SCREEN_HEIGHT ()
returns screen height for current device orientation.

SCREEN_SCALE ()
returns screen scale. Non-Retina screens have screen scale 1. Retina screens
have screen scale 2.

SCREEN_WIDTH ()
returns screen width for current device orientation.
The following code displays the screen characteristics.

PRINT "Screen WxH =";SCREEN_WIDTH();"x";SCREEN_HEIGHT()
PRINT "Retina: ";

42 Smart Basic Reference Manual © Mr. Kibernetik

IF SCREEN_SCALE()=2 THEN
 PRINT "Yes"
ELSE
 PRINT "No"
ENDIF

GET SCREEN SIZE W,H
gets width and height of the screen for current device orientation to variables [w]
and [h], in points.

7.2. Text view
Text-view is the default mode of Smart Basic. Except for font and color the output
style can not be chosen.
Free positioning of text in horizontal and/or vertical screen-coordinates is not pos-
sible. Interface objects (chapter 5.), custom made “pages” (subchapter 5.1.) and
sprites (chapter 8.) however, can be positioned freely.
Text input from the keyboard either virtual or external via bluetooth, via the com-
mand INPUT, is default in a text-field at the top of the screen.

TEXT
switches from graphics to text view.

TEXT CLEAR
clears text view.

7.2.1 Text output styling
FONT F$ LOAD N$
loads TTF-font from file [f$]. Font name is saved to string variable [n$].

SET OUTPUT BACK COLOR R,G,B
sets text output window background color to value with red [r], green [g] and blue [b]
components. Valid values are from 0 to 1.

SET OUTPUT FONT COLOR R,G,B
sets text output window font color to value with red [r], green [g] and blue [b] com-
ponents. Valid values are from 0 to 1.

SET OUTPUT FONT NAME N$
sets name of text output window font to [n$]. List of fonts you can get by command
LIST FONTS.

SET OUTPUT FONT SIZE N
sets size of text output window font to value [n].

'Emoji'-characters can also be printed but need special attention.
See posted item on the forum at

http://nitisara.ru/forum/viewtopic.php?f=28&t=1211&start=10

Fit font-size to screen-width
with monospaced fonts, e.g. “Courier” or "Menlo-Regular", the number of charac-
ters per line can be preset with the following code:

GET SCREEN SIZE sw,sh
fmin=10 'minimum fontsize
fsize=MAX((sw-20)/(0.6*n),fmin)
SET OUTPUT FONT SIZE fsize

http://nitisara.ru/forum/viewtopic.php?f=28&t=1211&start=10

collected and edited by 'Dutchman' Ton Nillesen 43

7.3. Graphics view
In graphics view full control of each display-pixel is possible.

GRAPHICS
switches to graphics view.

SET TOOLBAR OFF
SET TOOLBAR ON
turns OFF and turns ON visibility of top control toolbar. It also affects position of
main graphics window on the screen.

TOOLBAR_VISIBLE ()
returns 1 if top control toolbar is visible. Otherwise it returns 0.

7.3.1 Handling Retina display resolution
In smart BASIC graphics commands are usually Retina-independent, so drawing
line from 0,0 to 100,100 will look similar on Retina and on non-Retina screen. But
pixel-level commands (for example DRAW PIXEL) are Retina-dependent, because
they have access to physical pixels.Screen scale value returned by function
SCREEN_SCALE() shows whether screen is Retina or not.

7.3.2 Presets
DRAW ALPHA X
sets draw alpha to value [x]. Valid values are from 0 to 1.
Alpha determines the transparency of the graphics.
In computer graphics, alpha compositing is the process of combining an image with
a background to create the appearance of partial or full transparency.

DRAW COLOR R,G,B
sets draw color to value with red [r], green [g] and blue [b] components. Valid values
are from 0 to 1.

DRAW DASH X
sets dashed line with interval [x]. Value 0 sets solid line. Example:

DRAW DASH 10
You can also use custom dash pattern by specifying multiple values indicating solid
and space intervals.
Example:

DRAW DASH 20,10,1,10
If you set line style, then it continues to all next drawing lines.
The command DRAW DASH 0 turns it off.

DRAW DASH X PHASE Y
Parameter PHASE sets offset of dash pattern from the beginning of line for [y]
points. By drawing a line with pattern X and cycling phase Y, a 'moving' line pattern
can be realized. If the PHASE parameter 'Y' is made negative, the direction of mo-
tion will reverse. If the PHASE parameter is not made cyclic, but steadily increasing
or decreasing, then the cycle-period will automatically be made equal to the length
of the pattern. See 'Moving lines' example attached to the command REFRESH.

DRAW FONT NAME N$
sets graphics font name to [n$]. Default is "Courier-Bold".

DRAW FONT SIZE X
sets graphics font size to [x]. Default is 20.

44 Smart Basic Reference Manual © Mr. Kibernetik

FONT F$ LOAD N$
loads TTF-font from file [f$]. Font name is saved to string variable [n$].

FONT_SIZE ()
returns graphics font size.

DRAW LINECAP RECT

DRAW LINECAP ROUND
sets style of line end: RECT - rectangular, ROUND - rounded. Default is RECT.

DRAW SIZE X
sets pen thickness to value [x].
In general the size will be an integer value. Decimal fractions however will also
work. Minimum physical size is one pixel, but in case of x<1 the subjective size will
be decreased by lowering the intensity.

DRAW TO X,Y
sets current pen coordinates to [x,y].

FILL ALPHA X
sets fill alpha to value [x]. Valid values are from 0 to 1.

FILL COLOR R,G,B
sets fill color to value [r,g,b] with red, green and blue components. Valid values are
from 0 to 1.

GRAPHICS
switches to graphics view.

GRAPHICS CLEAR
clears graphics view with black color.

GRAPHICS CLEAR R,G,B
clears graphics view with specified [r,g,b] color of red, green and blue components.
Valid values are from 0 to 1.

GRAPHICS CLEAR R,G,B,A
clears graphics view with specified [r,g,b] color of red, green, blue components and
value of alpha-channel [a]. Valid values are from 0 to 1.

GRAPHICS MODE X
sets graphics commands compositing mode to X, where X is one of the modes list-
ed below.
Available modes are:
NORMAL, MULTIPLY, SCREEN, OVERLAY, DARKEN, LIGHTEN, COLORDODGE,
COLORBURN, SOFTLIGHT, HARDLIGHT, DIFFERENCE, EXCLUSION,
HUE, SATURATION, COLOR, LUMINOSITY, CLEAR, COPY, SOURCEIN,
SOURCEOUT, SOURCEATOP, DESTOVER, DESTIN, DESTOUT, DESTATOP,
XOR, PLUSDARKER, PLUSLIGHTER
Default mode is "NORMAL".
Example:

GRAPHICS
FILL RECT 50,50 SIZE 50
GRAPHICS MODE CLEAR
FILL RECT 50,50 SIZE 25

A short description of the several modes is given in the documentation-section of
the app, (in editor, touch symbol &)

collected and edited by 'Dutchman' Ton Nillesen 45

A more detailed description with images can be found in the Apple developers lib
From that info, three documents have been extracted and stored In the DropBox-
folder of this manual http://bit.ly/1DN8gYw
These documents are:

“Image composition modes”, “Color and color spaces” and “Trans-
parency layers”

OPTION IMAGE POS CENTRAL
OPTION IMAGE POS NORMAL
set coordinate mode for DRAW IMAGE command: "CENTRAL" - coordinates set
image center; "NORMAL" - coordinates set image left corner. Default is NORMAL.

OPTION TEXT POS CENTRAL
OPTION TEXT POS NORMAL
set coordinate mode for DRAW TEXT command: "CENTRAL" - coordinates set text
center; "NORMAL" - coordinates set text left corner. Default is NORMAL.

REFRESH
updates graphics window.

REFRESH OFF
turns off automatic graphics window update.

REFRESH ON
turns on automatic graphics window update. By default updating is on.

REFRESH OFF
disables automatic screen update and REFRESH ON enables it and forces immedi-
ate update. The command REFRESH just updates screen without turning on auto-
matic updates. It allows you to update graphics screen exactly when you need to,
without turning on/off automatic screen updates.
Example:

' moving lines
' with pattern length 45
GRAPHICS
sw=SCREEN_WIDTH()
sh=SCREEN_HEIGHT()
DRAW SIZE 5
REFRESH OFF
DO
 i+=1
 DRAW DASH 20,10,5,10 PHASE i*5
 GRAPHICS CLEAR 0,0,0
 DRAW CIRCLE sw/2,sh/2 SIZE sw/4
 DRAW RECT 2,2 TO sw/3,sh/3
 DRAW LINE 2,sh/2 TO sw,sh
 REFRESH
 i%=9
 GET TOUCH n AS x,y
UNTIL x>-1 AND y>-1
END

SHADOW ALPHA X
sets shadow opacity to value [x]. Valid values are from 0 to 1. Default is 1/3.

SHADOW BLUR X
sets shadow blur to value [x]. Default is 2.

http://bit.ly/1DN8gYw
https://developer.apple.com/library/mac/documentation/graphicsimaging/conceptual/drawingwithquartz2d/dq_images/dq_images.html

46 Smart Basic Reference Manual © Mr. Kibernetik

SHADOW COLOR R,G,B
sets shadow color to value [r,g,b] with red, green and blue components. Valid val-
ues are from 0 to 1. Default is [0,0,0].

SHADOW OFF
turns shadows off.

SHADOW OFFSET X,Y
sets shadow offset in both directions. Default is [3,3].

SHADOW ON
turns shadows on.

TEXT
switches from graphics to text view.

7.3.3 Draw text
Note on Emoji-characters
'Emoji'-characters can also be drawn but need special attention.
See posted item on the forum at

http://nitisara.ru/forum/viewtopic.php?f=28&t=1211&start=10

DRAW TEXT T$ AT X,Y
draws text [t$] at point [x,y] which indicates top left corner of text.
OPTION TEXT POS command affects this command.

DRAW FONT NAME N$
sets graphics font name to [n$]. Default is "Courier-Bold".

DRAW FONT SIZE X
sets graphics font size to [x]. Default is 20.

FONT F$ LOAD N$
loads TTF-font from file [f$]. Font name is saved to string variable [n$].

FONT_SIZE ()
returns graphics font size.

TEXT_HEIGHT (T$)

TEXT_WIDTH (T$)
return height and width of text [t$] for current graphics font.

7.3.4 Draw pixels
DRAW PIXEL X,Y COLOR R,G,B,A
draws pixel at coordinates [x,y] with color of red [r], green [g] and blue [b] compo-
nents, and with alpha [a]. Parameter COLOR can be omitted to use current draw
color and alpha:

DRAW PIXEL x,y
Parameter [a] can be omitted. In this case alpha is equal to 1:

DRAW PIXEL x,y COLOR r,g,b
This command is screen scale-dependent.

GET PIXEL X,Y COLOR R,G,B,A
gets color of pixel at coordinates [x,y] to variables for red [r], green [g] and blue [b]
components, and alpha-value to variable [a]. This command is screen scale-de-
pendent.

http://nitisara.ru/forum/viewtopic.php?f=28&t=1211&start=10

collected and edited by 'Dutchman' Ton Nillesen 47

7.3.5 Draw lines
DRAW ARC X,Y, R, A1,A2, D
draws arc with center at point [x,y], radius [r], start angle [a1], stop angle [a2] and
direction [d]. If [d] is 0 then arc is clockwise, otherwise it is counterclockwise. Direc-
tion parameter can be omitted, in this case arc is clockwise.

DRAW LINE TO X,Y
Draws line from current pen coordinates to point [x,y]

DRAW LINE X1,Y1 TO X2,Y2
draws line from point [x1,y1] to point [x2,y2].

7.3.6 Draw figures
DRAW CIRCLE X,Y SIZE R
draws circle with center at point [x,y] and radius [r].

DRAW CIRCLE X,Y SIZE RX,RY
draws ellipse with center at point [x,y], radius [rx] in "x" direction and radius [ry] in
"y" direction.

DRAW CIRCLE X1,Y1 TO X2,Y2
draws ellipse inside rectangle from point [x1,y1] to point [x2,y2].

DRAW POLY X,Y COUNT N START S
draws polygon with arbitrary number of vertices. Variables [x] and [y] are single-di-
mensional numeric arrays with "x" and "y" coordinates of vertices, [n] is number of
vertices and [s] is index of first vertex.
If parameter COUNT is omitted then maximum number of vertices is used.
If parameter START is omitted then vertices start from first index in arrays.
For example:

DRAW POLY x,y
draws polygon using all vertices in [x] and [y] arrays.
Command OPTION BASE has its effect in this command.

DRAW QUAD X1,Y1, X2,Y2, X3,Y3, X4,Y4
draws quadrangle with vertices at points [x1,y1], [x2,y2], [x3,y3] and [x4,y4].
The points in the parameter list of the QUAD functions must be given in cyclic order.
If not, the result is two separate triangles instead of a quadrangle.

DRAW RECT X,Y SIZE R
draws rectangle with center at point [x,y] with size [r] from center to edges in both
directions.

DRAW RECT X,Y SIZE RX,RY
draws rectangle with center at point [x,y] with size [rx] from center to edge in "x" di-
rection and [ry] in "y" direction.

DRAW RECT X1,Y1 TO X2,Y2
draws rectangle with corners at [x1,y1] and [x2,y2] coordinates.

DRAW PIXEL and GET PIXEL commands are NOT fully reversible!
Smart BASIC uses premultiplied alpha graphics. Therefore, the alpha value

must be equal to 1 if writing and reading of image pixels must be robust,
for example for iterative image editing.

48 Smart Basic Reference Manual © Mr. Kibernetik

DRAW TRI X1,Y1, X2,Y2, X3,Y3
draws triangle with vertices at points [x1,y1], [x2,y2] and [x3,y3].

FILL CIRCLE X,Y SIZE R
fills circle with center at point [x,y] and radius [r].

FILL CIRCLE X,Y SIZE RX,RY
fills ellipse with center at point [x,y], radius [rx] in "x" direction and radius [ry] in "y"
direction.

FILL CIRCLE X1,Y1 TO X2,Y2
fills ellipse inside rectangle with corners at [x1,y1] and [x2,y2] coordinates.

FILL POLY X,Y COUNT N START S
fills polygon with arbitrary number of vertices. Variables [x] and [y] are single-dimen-
sional numeric arrays with "x" and "y" coordinates of vertices, [n] is number of ver-
tices to draw and [s] is index of first vertex. If parameter COUNT is omitted then
maximum number of vertices is used. If parameter START is omitted then vertices
start from first index in arrays. For example:

FILL POLY x,y
fills polygon using all vertices in [x] and [y] arrays.
Command OPTION BASE has its effect in this command.

FILL QUAD X1,Y1, X2,Y2, X3,Y3, X4,Y4
fills quadrangle with vertices at points [x1,y1], [x2,y2], [x3,y3] and [x4,y4].
The points in the parameter list of the QUAD functions must be given in cyclic order.
If not, the result is two separate triangles instead of a quadrangle.

FILL RECT X,Y SIZE R
fills rectangle with center at point [x,y] with size [r] from center to edge in both direc-
tions.

FILL RECT X,Y SIZE RX,RY
fills rectangle with center at point [x,y] with size [rx] from center to edge in "x" direc-
tion and [ry] in "y" direction.

FILL RECT X1,Y1 TO X2,Y2
fills rectangle with corners at [x1,y1] and [x2,y2] coordinates.

FILL TRI X1,Y1, X2,Y2, X3,Y3
fills triangle with vertices at points [x1,y1], [x2,y2] and [x3,y3].

7.3.7 Images and screenshots
See also camera input and output commands in subchapter 2.4 on page 18.

ALBUM EXPORT F$
exports image or video file [f$] from smart BASIC to device camera roll.

ALBUM IMPORT F$
imports image or video file from device camera roll to smart BASIC file [f$].

DRAW IMAGE N$ AT X,Y SCALE S ANGLE A
DRAW IMAGE N$ AT X,Y SCALE SX,SY ANGLE A
draws image with filename [n$] at coordinates [x,y] with scale value [s] on x- and y-
axis or [sx] on x-axis and [sy] on y-axis, and rotated clockwise at angle value [a].
Parameter SCALE can be omitted to use scale value 1.
Parameter ANGLE can be omitted to use angle value 0.
Valid image types are: JPG, JPEG, PNG, BMP, GIF, TIF, ICO, CUR, XBM.
OPTION IMAGE POS command affects this command.

collected and edited by 'Dutchman' Ton Nillesen 49

To determine required scale, the size of the image can be obtained with the com-
mand GET IMAGE N$ SIZE W,H

DRAW IMAGE N$ IN X1,Y1, X2,Y2, X3,Y3, X4,Y4
draws image with filename [n$] inside arbitrary quadrangle with coordinates: [x1,y1]
- top left corner, [x2,y2] - top right corner, [x3,y3] - bottom left corner, [x4,y4] - bot-
tom right corner. Valid image types are: JPG, PNG, BMP, GIF, TIF, ICO, CUR, XBM.
See Examples/Graphics/flying turtle.txt

GET IMAGE N$ DPI_SCALE S
gets dpi-scale of image [n$] to variable [s]. When dpi is 72 the scale is equal to 1.

GET IMAGE N$ SIZE W,H
gets width and height of image [n$] to variables [w] and [h].

GRAPHICS SAVE X,Y, W,H TO N$
Saves to file [n$] the part of graphics screen, which is located at coordinates [x], [y],
having width [w] and height [h]. Valid image file types are: JPG, PNG. If file exten-
sion is not set then PNG file type is used.

8. Sprites

8.1. General
Sprites are separate graphics layers which do not depend upon main graphics win-
dow. They can have custom size and can be moved. Main graphics window is of
maximum size and cannot be moved. Sprites are displayed above the background
of the main graphics window and have their own position, rotation, transparency
and other parameters. Like any object in smart BASIC, each sprite must have its
own unique name.
Similarly to interface objects, sprite belongs to the page which was active when
sprite was created. Sprite coordinates are relative to the page coordinates. More
about pages see in chapter 5. “Interface objects” on page 28.

8.1.1 Initial commands
Before using a sprite, it must be created first by one of the following three methods:
• SPRITE BEGIN … SPRITE END, to draw a sprite
• SPRITE LOAD, to load a sprite from file
• SPRITE SCAN, makes sprite from partial screenshot

These commands are explained with examples in subchapter 8.4 on page 51.
It is recommended to use PNG image files to load and save sprite images, because
this file format supports image transparency.

8.1.2 Sprite visibility
Sprite visibility on the screen is defined by commands

SPRITE SHOW and SPRITE HIDE.

8.1.3 Animation
Sprites can be single-frame or multi-frame. Besides frame animation available for
multi-frame sprites, animation commands like SPRITE PLAY or SPRITE LOOP can
perform regular animation of different sprite parameters (coordinates, rotation an-
gle, scale) which can be set with 'SPRITE N$ DA a DS s DX x DY y' command. For
example, program:

OPTION ANGLE DEGREES
SPRITE "mySprite" DELAY 0.04

50 Smart Basic Reference Manual © Mr. Kibernetik

SPRITE "mySprite" DA 5
SPRITE "mySprite" LOOP

will rotate sprite "mySprite" over 5 degrees every 0.04 seconds. If this is a multi-
frame sprite then its frame animation will also be performed.

8.1.4 Sprite display priority
By default, sprites display order depends on order of their creation, but it may be
changed using command SPRITE N$ ORDER K. See also "Sprite order rules" on
page 55.

8.2. Sprite presets
OPTION SPRITE POS CENTRAL

OPTION SPRITE POS NORMAL
set sprites position mode: "CENTRAL" - sprite position coordinates set center of the
sprite; "NORMAL" - sprite position coordinates set top left corner of the sprite. De-
fault is NORMAL.

SPRITE N$ ALPHA X
sets transparency of sprite with name [n$] to value [x]. Valid values are from 0 to 1.

8.3. Get sprite info
GET SPRITE N$ ANGLE X
gets current rotation angle of sprite [n$] to numeric variable [x]. OPTION ANGLE
command affects this command.

GET SPRITE N$ DPI_SCALE S
gets dpi-scale of sprite [n$] to numeric variable [s]. When dpi is 72 the scale is
equal to 1.

GET SPRITE N$ FRAME X
gets current frame number of sprite [n$] to numeric variable [x]. OPTION BASE
command affects this command.

GET SPRITE N$ POS X,Y
gets current coordinates of sprite [n$] to numeric variables [x] and [y].

GET SPRITE N$ SCALE S
GET SPRITE N$ SCALE X,Y
gets current scale of sprite [n$] on both axis to numeric variable [s] or scale on x-
axis to variable [x] and on y-axis to variable [y].

GET SPRITE N$ SIZE W,H
gets width and height of sprite [n$] to numeric variables [w] and [h], in points. To get
sprite width and height in pixels they should be multiplied to sprite dpi-scale.

SPRITES_COLLIDE (A$, B$)
returns 1 if sprite with name [a$] is currently colliding with sprite [b$], otherwise re-
turns 0.

SPRITE_HIT (N$, X,Y)
returns 1 if point with coordinates [x], [y] hits the sprite [n$]. Otherwise returns 0.

SPRITE_PLAYS (N$)
Returns 1 if sprite with name [n$] is currently animating, otherwise returns 0.

SPRITE_VISIBLE (N$)
returns 1 if sprite with name [n$] is shown, otherwise returns 0.

collected and edited by 'Dutchman' Ton Nillesen 51

8.4. Sprite creation, loading, saving and initiation
Sprites can be drawn or loaded from file. Once created they can be modified,
copied and/or combined to multi-frame sprites. Creating a sprite by drawing should
begin with SPRITE N$ BEGIN W,H. After finishing with SPRITE END the sprite can
be modified by starting with SPRITE N$ BEGIN and again finishing with SPRITE
END if the modification is done.

SPRITE N$ BEGIN
switches graphics screen to sprite drawing mode in existing sprite with name [n$].
Usual graphics commands operate in this mode, but they draw current sprite only
instead of drawing in common graphics window. Common graphics window is visi-
ble in this mode. Sprite drawing must be finished with command SPRITE END,
which switches back to common graphics window, the background graphics layer.

SPRITE N$ BEGIN W,H
switches graphics screen to sprite drawing mode for sprite with name [n$], and sets
its size to [w] points in width and [h] points in height. Usual graphics commands op-
erate in this mode, but they draw current sprite only instead of drawing in common
graphics window. In this mode common graphics window is not visible. Sprite draw-
ing must be finished with command SPRITE END, which closes sprite graphics win-
dow and switches to common graphics view.

SPRITE N$ COPY M$
Copies sprite with name [n$] to new sprite with name [m$]. Screen display order of
sprite [m$] is the same as of sprite [n$]. If it is a multi-frame sprite then frames time
interval is also copied.

SPRITE N$ LOAD F$, X,Y
Creates multi-frame sprite with name [n$] from the contents of image file (sprite
sheet) [f$] which contains [x] sprites horizontally and [y] sprites vertically. Valid im-
age types are: JPG, JPEG, PNG, BMP, GIF, TIF, ICO, CUR, XBM.
Command loads a single sprite in several phases (frames) of motion from one sprite
sheet.
It loads the sprite sheet F$ into sprite N$, divide it into frames (X images in width
and Y frames in height) and combine single multi-frame sprite from these images.
This multi-frame sprite can be animated, for example it can be a running character,
or an exploding bomb, or whatever.
Example of such a sprite sheet is: "sprite_smurf" .

Download it from: http://bit.ly/1DN8gYw
The figure is a reduced version. The grey background indicates the transparency.
The following code shows the smurf in motion:

GRAPHICS
SPRITE "smurf" LOAD "sprite_smurf.png",4,4
SPRITE "smurf" SHOW
SPRITE "smurf" DELAY 0.04
SPRITE "smurf" LOOP
DO
UNTIL 0

It loads the sprite sheet file, creates a multi-frame sprite
from this sprite sheet, shows sprite on screen, sets anim-
ation speed and runs it in an infinite loop.
Of course you'll need file "sprite_smurf.png" to be present
in the current directory. A multi-frame sprite can also be

http://bit.ly/1DN8gYw

52 Smart Basic Reference Manual © Mr. Kibernetik

generated from an 'animated GIF' . See command SPRITE N$ LOAD F$

SPRITES M$ LOAD F$, X,Y
Loads image (sprite sheet) with name [f$], creates from it [x] sprites horizontally and
[y] sprites vertically, and saves their names to one-dimensional string array [m$].
Command loads a series of sprites from a single sprite sheet F$. Names are stored
to array M$.
This approach is used when loading textures, back-
ground objects or other images which should be
used as sprites. Example of such a sprite sheet is:
"sprite_icons".
Download it from: http://bit.ly/1DN8gYw
It contains icons in several colors, for twitter, Face-
book etc.
The following code is an example program:

GRAPHICS
OPTION BASE 1
sw=SCREEN_width()
sh=SCREEN_HEIGHT()
SPRITES M$ LOAD "sprite_icons.png",5,4
dx=sw/6 ! dy=sh/5
' ---- load sprite
FOR i=1 TO 4
 FOR j=1 TO 5
 n=j+(i-1)*5
 SPRITE M$(n)AT (j-1)*dx,(i-1)*dy
 SPRITE M$(n)SHOW
 NEXT j
NEXT i
pause 1
' ---- position sprites randomly
t=0.5
DO
 IF n>20 THEN n=1
 SPRITE M$(n) AT RND(0.9*sw),RND(0.9*sh)
 n=n+1
 PAUSE t
 t=t-t/30
UNTIL 0
END

It loads the sprite sheet file, creates 20 separate sprites from this sprite sheet,
shows them on screen and repositions them randomly in an infinite loop.
Of course you'll need file "sprite_icons.png" to be present in the current directory.

SPRITE N$ DELETE
deletes sprite with name [n$].

SPRITES DELETE
completely deletes all sprites, both visible and hidden.

SPRITE END
SPRITE N$ END
finishes drawing of sprite and switches drawing mode to common graphics screen.
This command must be executed to finish sprite creation, started by command
SPRITE BEGIN.

http://bit.ly/1DN8gYw

collected and edited by 'Dutchman' Ton Nillesen 53

SPRITE N$ FLIP K
mirrors sprite [n$] horizontally if [k] = 1, vertically if [k] = 2, or shows sprite without
mirroring if [k] = 0.

SPRITE N$ HIDE
hides sprite with name [n$] off the screen.

SPRITE N$ LOAD F$
creates sprite with name [n$] from the contents of image file [f$]. Valid image types
are: JPG, JPEG, PNG, BMP, GIF, TIF, ICO, CUR, XBM.
It is recommended to use PNG image files to load and save sprite images, because
this file format supports image transparency.
If sprite is loaded from file then you should not delete the file while sprite is in use.
This is due to image caching peculiarities in iOS.
If the file F$ is an 'animated GIF' then this load-command will generate a multiframe
sprite which can be saved as sprite-sheet.. The following example generates a
sprite-sheet from an animated GIF of an explosion. By changing the variable
name$, it can be used for other GIF's.

' Make SpriteSheet from animated GIF
name$="explosion"
sw=SCREEN_WIDTH()
sh=SCREEN_HEIGHT()
GRAPHICS
GRAPHICS CLEAR
SPRITES DELETE ' delete orphan sprites
IF FILE_EXISTS (name$&".png") THEN GOTO display
SPRITE 1 LOAD name$&".gif"
SPRITE 1 SAVE name$&".png"
SPRITES DELETE
debug pause ' check format x,y of generated spritesheet
display:
OPTION SPRITE POS CENTRAL
' ---- enter here x,y from generated spritesheet
SPRITE "a" LOAD name$&".png",6,5
SPRITE "a" AT sw/2,sh/2 SCALE 1/2
SPRITE "a" SHOW
SPRITE "a" DELAY 0.04
SPRITE "a" LOOP
DO
UNTIL 0

In the first run the sprite-sheet is generated and the program stops at the command
'debug pause'.
The generated sprite-sheet should then be viewed and the format x,y (6,5 in this
case) should be set in the command SPRITE "a" LOAD name$&".png",x,y
In the second run the multi-frame sprite is then shown in animation.

SPRITE N$ ORDER K
sets screen depth display order for sprite with name [n$]. By default order indices
start with 0. Sprite with higher order index is displayed above the sprite with lower
order index. OPTION BASE command affects this command.
See "Sprite order rules" on page 55.

SPRITE N$ RENAME M$
Renames sprite with name [n$] to new name [m$].

54 Smart Basic Reference Manual © Mr. Kibernetik

SPRITE N$ RESIZE W,H
changes physical size of sprite with name [n$] to [w] points wide and [h] points high.

SPRITE N$ SAVE F$
saves sprite with name [n$] to image file [f$]. Valid image file types are: JPG, JPEG,
PNG. If file extension is not set then PNG file type is used.

SPRITE N$ SCAN X,Y, W,H
creates sprite with name [n$] from the part of common graphics screen, which is lo-
cated at coordinates [x], [y], having width [w] and height [h].

SPRITE N$ SHOW
shows sprite with name [n$] on the screen.

SPRITE N$ STAMP
leaves a stamp of sprite with name [n$] on the common graphics screen using all
current parameters of the sprite. It is not necessary for sprite to be visible on the
screen when using this command. Command GRAPHICS MODE has its effect in
this command.

8.5. Positioning and moving sprites
SPRITE N$ AT X,Y SCALE S ANGLE A FLIP K
SPRITE N$ AT X,Y SCALE SX,SY ANGLE A FLIP K
places sprite with name [n$] at coordinates [x] and [y], sets its scale to value [s] on
x- and y-axis or [sx] to x-axis and [sy] to y-axis, and rotates it to angle [a]. Para-
meter FLIP allows to mirror sprite horizontally if [k] = 1, mirror vertically if [k] = 2, or
show without mirroring if [k] = 0 or if FLIP is not used. Scaling and rotation are per-
formed relatively to the center of the sprite. Parameters SCALE, ANGLE and FLIP
are optional, their order is arbitrary. By default scale is 1 and angle is 0. OPTION
ANGLE command affects this command.

SPRITE N$ DA a DS s DX x DY y
SPRITE N$ DA A DS SX,SY DX X DY Y
sets regular change of specified parameters of the sprite [n$] with each frame cycle.
DA parameter sets change of angle by value [a], DS - scale by value [s] simultan-
eously on x- and y-axis or by value [sx] on x-axis and by value [sy] on y-axis, DX -
x-coordinate by value [x], DY - y-coordinate by value [y]. Each parameter is optional
but at least one should be specified. OPTION ANGLE command affects the value of
DA parameter.

SPRITE N$ FLIP K
mirrors sprite [n$] horizontally if [k] = 1, vertically if [k] = 2, or shows sprite without
mirroring if [k] = 0.
Example of repeated FLIP usage:

Sprite$="submarine 1.png"
sh=SCREEN_HEIGHT()
sw=SCREEN_WIDTH()
movex=3
GRAPHICS
OPTION SPRITE POS CENTRAL
SPRITE "a" LOAD Sprite$
SPRITE "a" DELAY 0.04
SPRITE "a" AT sw/2,sh/2
SPRITE "a" dX movex
SPRITE "a" SHOW

collected and edited by 'Dutchman' Ton Nillesen 55

SPRITE "a" loop
DO
PAUSE 1
CALL ReverseSprite
GET TOUCH nn AS x,y
UNTIL x>-1
SPRITES DELETE
END

DEF ReverseSprite ' Function to alternate flip
Flipped=(Flipped+1)%2
SPRITE "a" FLIP Flipped
SPRITE "a" dX .movex*(1-Flipped*2)
END DEF

SPRITE N$ PLAY
Starts animation for multi-frame sprite [n$] and starts motion, also for single frame
sprites, determined by the parameters set by the command SPRITE N$ DA a DS s
DX x DY y. . Animation of multi-frame sprites cycles once and then stops.

8.6. Sprite order rules
by 'matt7' See: https://nitisara.ru/forum/viewtopic.php?f=26&t=2218
1. Sprite with a higher order index is displayed above sprite with a lower order in-
dex.

Sprite "a" has order 0
Sprite "b" has order 1 -> "b" appears above "a"

2. Default sprite order depends on order of creation (order index starts at 0).
Sprite "a" created -> "a" has order 0
Sprite "b" created -> "b" has order 1
Sprite "c" created -> "c" has order 2

3. Sprites can be assigned an order index manually
by using command SPRITE N$ ORDER K.

Sprite "a" created -> "a" has order 0
Sprite "b" created -> "b" has order 1
Sprite "c" created -> "c" has order 2
Sprite "a" order 3 -> "a" has order 3

4. Sprites can be assigned to an order index that other sprites also have, in which
case the reordered sprite appears above all other sprites of that order index.

Sprite "a" created -> "a" has order 0
Sprite "b" created -> "b" has order 1
Sprite "c" created -> "c" has order 2
Sprite "a" order 1 -> "a" has order 1 ("a" appears above
"b")

5. If multiple sprites have the same order index, a sprite can jump to the top of its
order index group if one of the following events occur:
 a. It is resized

Sprite "a" created -> "a" has order 0
Sprite "b" created -> "b" has order 1
Sprite "c" created -> "c" has order 2
Sprite "a" order 1 -> "a" has order 1 ("a" appears above
"b")
Sprite "b" resized ("b" appears above "a")

 b. It is made visible after previously being hidden
Sprite "a" created -> "a" has order 0
Sprite "b" created -> "b" has order 1

https://nitisara.ru/forum/viewtopic.php?f=26&t=2218

56 Smart Basic Reference Manual © Mr. Kibernetik

Sprite "c" created -> "c" has order 2
Sprite "a" order 1 -> "a" has order 1 ("a" appears above "b")
Sprite "b" hidden
Sprite "b" shown ("b" appears above "a")

 c. It is copied (the copy jumps to the top)
Sprite "a" created -> "a" has order 0
Sprite "b" created -> "b" has order 1
Sprite "c" created -> "c" has order 2
Sprite "a" order 1 -> "a" has order 1 ("a" appears above "b")
Sprite "b" copy to "b2" -> "b2" has order 1 ("b2" appears
above "a")

6. If a sprite is copied, the copy will have the same order index as the original
(see "b" above)

7. If the last created sprite is deleted, the next created sprite will reuse the last order
number.

Sprite "a" created -> "a" has order 0
Sprite "b" created -> "b" has order 1
Sprite "c" created -> "c" has order 2
Sprite "c" deleted
Sprite "d" created -> "d" has order 2

Note: Sprite "d" has order 3 if "c" is not deleted, and "d" stays at order 3 if "c" is de-
leted after "d" is created
8. If a sprite created before the last sprite is deleted, the next created sprite will con-
tinue with the next order number.

Sprite "a" created -> "a" has order 0
Sprite "b" created -> "b" has order 1
Sprite "c" created -> "c" has order 2
Sprite "b" deleted
Sprite "d" created -> "d" has order 3

9. If a sprite is reordered to the order index for the next sprite that will be created,
the next sprite will still use that order index.

Sprite "a" created -> "a" has order 0
Sprite "b" created -> "b" has order 1
Sprite "c" created -> "c" has order 2
Sprite "a" order 3 -> "a" has order 3
Sprite "d" created -> "d" has order 3

10. Default sprite order index for next sprite to be created is maintained across
pages.

Page "P1" set
Sprite "a" created -> "a" has order 0
Sprite "b" created -> "b" has order 1
Sprite "c" created -> "c" has order 2
Page "P2" set
Sprite "d" created -> "d" has order 3
Sprite "e" created -> "e" has order 4
Sprite "f" created -> "f" has order 5

11. Sprite order cannot be manually assigned if the page it belongs to is not set as
the active page.

Page "P1" set
Sprite "a" created -> "a" has order 0
Sprite "b" created -> "b" has order 1
Sprite "c" created -> "c" has order 2
Page "P2" set
Sprite "a" order set to 3 -> "a" has order 0 (no effect)

collected and edited by 'Dutchman' Ton Nillesen 57

12. Sprite will jump to the currently active page if it is shown after previously being
hidden

Page "P1" set
Sprite "a" created -> "a" has order 0
Sprite "b" created -> "b" has order 1
Sprite "c" created -> "c" has order 2
Page "P2" set
Sprite "a" shown (no effect)
Sprite "a" hidden
Sprite "a" shown -> "a" now appears on page "P2" (with the
same coordinates but now relative to page "P2")

#11 was my main problem, as I had no clue why some of my sprite order com-
mands were working (I didn't realize this was only on the active page) while other
sprite order commands seemed to be doing nothing (on pages that were visible but
weren't the active page).

#12 was also a surprise and turned out to also be giving me problems, as it helped
explain why some of my sprites weren't reappearing with a sprite show command.
They were being moved to another page that happened to be hidden! (In my case,
this was an active page that was hidden because it contains all my touch controls/
touch targets that I wanted to be invisible.)

8.7. Multi-frame sprites
Purpose of multi-frame sprites is to show animation as a single sprite.
To simplify the creation of such sprites, the required separate phases of motion are
stored as frames in a single image: a sprite sheet.
Sprite sheets are commonly used in games and storybooks and are widespread on
internet. The first step, after finding the desired image-file, is to load the sprite sheet
and to separate the frames with the command SPRITE N$ LOAD F$, X,Y or to sep-
arate the sheet into single sprites with the command SPRITES M$ LOAD F$, X,Y.
Note the essential difference: SPRITE or SPRITES.

SPRITE N$ ADD K$
Adds contents of sprite with name [k$] to contents of sprite with name [n$], thus cre-
ating multi-frame sprite.

SPRITE N$ COPY M$
Copies sprite with name [n$] to new sprite with name [m$]. Screen display order of
sprite [m$] is the same as of sprite [n$]. If it is a multi-frame sprite then frames time
interval is also copied.

SPRITE N$ DELAY X
Sets to value [x] the time interval between frames when animating multi-frame sprite
[n$], in seconds. By default it is equal to 0.1.

SPRITE N$ FRAME K
sets current frame number to [k] for multi-frame sprite [n$]. OPTION BASE com-
mand affects this command.

SPRITE N$ LOOP
starts animation for multi-frame sprite [n$]. Animation loops infinitely.
Also the motion parameters will be activated as determined by the command
SPRITE N$ DA a DS s DX x DY y
Animation can be stopped by the command SPRITE N$ PLAY. In the following ex-
ample the smurf stops moving after one second plus one 'play'-cycle:

58 Smart Basic Reference Manual © Mr. Kibernetik

GRAPHICS
SPRITE "smurf" LOAD "sprite_smurf.png",4,4
SPRITE "smurf" SHOW
SPRITE "smurf" DELAY 0.04
SPRITE "smurf" LOOP
PAUSE 1
SPRITE "smurf" PLAY
DO ! UNTIL 0

SPRITE N$ PLAY
Starts animation for multi-frame sprite [n$]. Animation cycles once and then stops.
Furthermore this command starts motion, also for single frame sprites, determined
by the parameters set by the command SPRITE N$ DA a DS s DX x DY y

SPRITE_PLAYS (N$)
Returns 1 if sprite with name [n$] is currently animating, otherwise returns 0.

SPRITE N$ SWAY
starts animation for multi-frame sprite [n$]. When the end of animation cycle is
reached, it starts in the opposite direction of cycle. Animation loops infinitely.

SPRITE_FRAME (N$)
returns current frame number for sprite [n$]. OPTION BASE affects this function.

collected and edited by 'Dutchman' Ton Nillesen 59

9. Music, sound and speech
Smart BASIC can playback audio files, play musical notes and generate speech.
• Playing audio files, e.g. sound and music, in formats *.WAV, *.MP3 and *.AIFF is

performed with MUSIC commands, such as MUSIC LOAD or MUSIC PLAY.
• Playing musical notes is performed according to the MIDI protocol with NOTES

commands and can be done in real time or from loaded musical composition.
• Speech is generated from text by synthesized voices.

Furthermore a simple attention-signal is generated with the command:

BEEP
makes short beep sound.

9.1. Playing audio files
The files containing data referred to as 'musical composition' should contain audio
data coded in AIFF-, MP3- or WAV-format.

MUSIC M$ DELETE
deletes musical composition [m$] and releases its resources.

MUSIC M$ LOAD F$
loads musical composition [m$] from file [f$] in such formats as *.WAV, *.MP3,
*.AIFF.

MUSIC M$ LOOP
starts playback of musical composition [m$], looping it infinitely.

MUSIC M$ PLAY
starts playback of musical composition [m$].

MUSIC M$ STOP
stops playback of musical composition [m$].

MUSIC M$ TIME T
sets playback point of musical composition [m$] at [t] seconds.

MUSIC_LENGTH (M$)
returns duration of musical composition [m$], in seconds.

MUSIC_PLAYING (M$)
returns 1 if musical composition [m$] is currently playing. Otherwise returns 0.

MUSIC_TIME (M$)
returns current playback point of musical composition [m$], in seconds.

9.2. Playing musical notes and MIDI compositions
Playing musical notes can be done (a) in real time or (b) from loaded musical com-
position:
(a)Playing notes in real time is performed with NOTES MIDI command. So, your
device can be used as a MIDI synthesizer. A detailed description of MIDI commands
is out of scope of this manual. A short survey is given in the table next to the de-
scription of the NOTES MIDI command
(b)Playing notes from loaded musical composition can be done in several steps:
• loading musical composition from file with NOTES LOAD command or from mu-

sical notation with NOTES SET command.
• start/stop playing of musical composition with NOTES PLAY/NOTES STOP com-

mands. Musical playing does not block program execution and is performed in

60 Smart Basic Reference Manual © Mr. Kibernetik

background while program is running.
After finishing musical composition, playing is not stopped automatically. To detect
end of playing the functions NOTES_TIME() and NOTES_LENGTH() are used.
Total 16 musical tracks are available for playing notes. According to MIDI standard,
10-th track is used for percussions only.
Default musical instruments can be used (see "Instruments" section on page 63) or
they can be loaded from files in Soundfont2 or DLS formats with NOTES INSTRU-
MENTS command.

NOTES INSTRUMENTS F$
sets bank of instruments in Soundfont2 or DLS format from file [f$].

NOTES INSTRUMENTS DEFAULT
sets default bank of instruments.

NOTES LOAD F$
loads musical composition in *.MID format from file [f$].

NOTES MIDI T, CMD,A,B
sends MIDI command to device,
where:
[t] - track number (0..15)
[cmd] - MIDI command,
[a], [b] - command parameters.
The table gives a survey of
the MIDI commands.
For example, commands:

NOTES MIDI 3,12,19
NOTES MIDI 3,9,60,127

set instrument number 19 for
track 3 and start playing C4 note with volume 127 (“velocity” in MIDI-terms) on 3-rd
track.

More info on MIDI commands can be found on the forum, e.g. at
https://nitisara.ru/forum/viewtopic.php?f=26&t=1171
Special info on the drum sounds can be found on
http://nitisara.ru/forum/viewtopic.php?f=24&t=1186

NOTES PLAY
starts/resumes playing of musical composition, loaded with NOTES LOAD or
NOTES SET command. Avoid starting new musical composition while previous mu-
sical composition is still playing.

NOTES SAVE F$
saves musical composition to *.MID file [f$].

MIDI commands
nr command parameters
8 note-off key #; release velocity
9 note-on key #; attack velocity

10 aftertouch key #; key pressure
11 control-change controller #; controller data
12 patch-change instrument #
13 channel-pressure channel pressure
14 pitch-bend lsb; msb
15 system-message none or sysex

Examples and remarks from the forum
Great examples, but even more important are the improvements
in the documentation created by 'smbstarv' at e.g.

https://nitisara.ru/forum/viewtopic.php?f=20&t=2743
and https://nitisara.ru/forum/viewtopic.php?f=20&t=2744

http://nitisara.ru/forum/viewtopic.php?f=24&t=1186
https://nitisara.ru/forum/viewtopic.php?f=26&t=1171
https://nitisara.ru/forum/viewtopic.php?f=20&t=2744
https://nitisara.ru/forum/viewtopic.php?f=20&t=2743

collected and edited by 'Dutchman' Ton Nillesen 61

Note numbers
12-C0 24-C1 36-C2 48-C3 60-C4 72-C5 84-C6 96-C7 108-C8
13-C#0 25-C#1 37-C#2 49-C#3 61-C#4 73-C#5 85-C#6 97-C#7 109-C#8
14-D0 26-D1 38-D2 50-D3 62-D4 74-D5 86-D6 98-D7 110-D8
15-D#0 27-D#1 39-D#2 51-D#3 63-D#4 75-D#5 87-D#6 99-D#7 111-D#8
16-E0 28-E1 40-E2 52-E3 64-E4 76-E5 88-E6 100-E7 112-E8
17-F0 29-F1 41-F2 53-F3 65-F4 77-F5 89-F6 101-F7 113-F8
18-F#0 30-F#1 42-F#2 54-F#3 66-F#4 78-F#5 90-F#6 102-F#7 114-F#8
19-G0 31-G1 43-G2 55-G3 67-G4 79-G5 91-G6 103-G7 115-G8
20-G#0 32-G#1 44-G#2 56-G#3 68-G#4 80-G#5 92-G#6 104-G#7 116-G#8
21-A0 33-A1 45-A2 57-A3 69-A4 81-A5 93-A6 105-A7 117-A8
22-A#0 34-A#1 46-A#2 58-A#3 70-A#4 82-A#5 94-A#6 106-A#7 118-A#8
23-B0 35-B1 47-B2 59-B3 71-B4 83-B5 95-B6 107-B7 119-B8

Note numbers for percussions (Track № 10)
35 Bass Drum
36 Kick Drum
37 Snare Cross Stick
38 Snare Drum
39 Hand Clap
40 Electric Snare Drum
41 Floor Tom 2
42 Hi-Hat Closed
43 Floor Tom 1
44 Hi-Hat Foot
45 Low Tom
46 Hi-Hat Open
47 Low-Mid Tom
48 High-Mid Tom
49 Crash Cymbal
50 High Tom

51 Ride Cymbal
52 China Cymbal
53 Ride Bell
54 Tambourine
55 Splash cymbal
56 Cowbell
57 Crash Cymbal 2
58 Vibraslap
59 Ride Cymbal 2
60 High Bongo
61 Low Bongo
62 Conga Dead Stroke
63 Conga
64 Tumba
65 High Timbale
66 Low Timbale

67 High Agogo
68 Low Agogo
69 Cabasa
70 Maracas
71 Whistle Short
72 Whistle Long
73 Guiro Short
74 Guiro Long
75 Claves
76 High Woodblock
77 Low Woodblock
78 Cuica High
79 Cuica Low
80 Triangle Mute
81 Triangle Open
82 Shaker

NOTES SET A$,B$,...
sets musical composition from musical notation. Each specified string value [a$],
[b$], ... is a separate musical track, written in musical notation according to the
rules:
• letters "C", "D", "E", "F", "G", "A", "B" are notes "do", "re", "mi", "fa", "sol", "la", "si"
• letter "R" is a rest
• characters "#" and "$" make sharp and flat notes, e.g.: C#, D$
• octave is a number after note, e.g. E3, D#5
• letters "W", "H", "Q", "I", "S", "T" are duration of following notes, where

"W"=whole, "H"=half, "Q"=quarter, "I"=eighth, "S"=sixteenth, "T"=thirty second,
e.g. HC#

• character "." means that next note is one and a half times longer: Q.C
• letter "V" with integer number (0..127) set volume of following notes, e.g.: V60C#
• character ":" preceding with integer number set musical instrument number,

e.g. 123:C. The instrument choice ("nn:") only takes effect AFTER the next
note (or rest).

62 Smart Basic Reference Manual © Mr. Kibernetik

• musical instrument bank number (if present in bank of instruments) can be spe-
cified before instrument number, separated with character "/":, e.g. 2/12:E

• chord is set with notes in round brackets, e.g. (EGB)
• octave number, note duration, volume, instrument number are not necessary to

specify for each and every note - they affect all following notes until the value is
changed

Up to 16 musical tracks can be used. Track number 10 is for percussion instru-
ments. In percussions each note means separate instrument. List of instruments is
given in "Instruments" section.
By default, 4-th octave, one fourth note duration, volume 127, instrument number 0
are used.
Examples:

NOTES SET "c c# d d# e f f# g g# a a# b"
NOTES SET "12:c5cggaahg qffeeddhc"
NOTES SET "(egb)ccc (fac5)d4dd","19:we2 f"
NOTES SET ,,,,,,,,,"c2cc icqc icqc c"

Example with quarter notes and chords
Example from rbytes:

NOTES SET "46:q(c6e6g6)(d6f6a6)"
NOTES PLAY

The q sets duration as quarter notes. The notes inside parentheses play together as
a chord, 46 is just one of 127 MIDI instruments you can use, it is the Orchestral
Harp.

NOTES STOP
stops playing of musical composition.

NOTES TEMPO N

collected and edited by 'Dutchman' Ton Nillesen 63

sets tempo to [n] for already loaded musical composition or for newly created with
command NOTES SET musical compositions. Default tempo is 120.

NOTES_LENGTH ()
returns length of musical composition.

NOTES_PLAYING ()
returns 1 if musical composition is playing now, otherwise returns 0.
The notesplaying condition does not indicate whether the music has ended,
but whether the notes stop command has been given

NOTES_TIME ()
returns current playback time.

9.3. Default Musical instruments
Piano:
0 Acoustic Grand Piano
1 Bright Acoustic Piano
2 Electric Grand Piano
3 Honky-tonk Piano
4 Electric Piano 1
5 Electric Piano 2
6 Harpsichord
7 Clavinet

Chromatic Percussion:
8 Celesta
9 Glockenspiel
10 Music Box
11 Vibraphone
12 Marimba
13 Xylophone
14 Tubular Bells
15 Dulcimer

Organ:
16 Drawbar Organ
17 Percussive Organ
18 Rock Organ
19 Church Organ
20 Reed Organ
21 Accordion
22 Harmonica
23 Tango Accordion

Remarks by smbstarv 24 may 2024
NOTES TEMPO nn sets the tempo for the music (new or loaded) to be played by the sub-
sequent NOTES PLAY command.
NOTES TEMPO, when issued during the play of music, will have immediate effect on the
current tempo.
NOTESLENGTH() gives the length of the composition m$ played with NOTES TEMPO last
set before the NOTES SET m$ was issued.
However NOTES TEMPO nn does not effect NOTELENGTH() of a loaded *.mid file.
Unlike Volume change there is no possibility to change tempo inside a musical composition.
If you still want to do so: either …

Split the composition m$ into m1$
and m2$, and play them seamlessly
one after the other

NOTES TEMPO tempo_1
NOTES SET m1$
NOTES PLAY
PAUSE NOTES_LENGTH()
NOTES TEMPO tempo_2
NOTES SET m2$
NOTES PLAY

etc...

Or calculate the exact timelapse (tx)
between start and the moment to
change tempo

NOTES TEMPO tempo 1
NOTES SET m1$
NOTES PLAY
PAUSE tx
NOTES TEMPO tempo 2
rt=temp_1/tempo_2
PAUSE (NOTES_LENGTH()-tx)*rt

etc...

64 Smart Basic Reference Manual © Mr. Kibernetik

Guitar:
24 Acoustic Guitar (nylon)
25 Acoustic Guitar (steel)
26 Electric Guitar (jazz)
27 Electric Guitar (clean)
28 Electr. Guitar (muted)
29 Overdriven Guitar
30 Distortion Guitar
31 Guitar harmonics

Bass:
32 Acoustic Bass
33 Electric Bass (finger)
34 Electric Bass (pick)
35 Fretless Bass
36 Slap Bass 1
37 Slap Bass 2
38 Synth Bass 1
39 Synth Bass 2

Strings 1:
40 Violin
41 Viola
42 Cello
43 Contrabass
44 Tremolo Strings
45 Pizzicato Strings
46 Orchestral Harp
47 Timpani

Strings 2:
48 String Ensemble 1
49 String Ensemble 2
50 Synth Strings 1
51 Synth Strings 2
52 Choir Aahs
53 Voice Oohs
54 Synth Voice
55 Orchestra Hit

Brass:
56 Trumpet
57 Trombone
58 Tuba
59 Muted Trumpet
60 French Horn
61 Brass Section
62 Synth Brass 1
63 Synth Brass 2

Reed:
64 Soprano Sax
65 Alto Sax
66 Tenor Sax
67 Baritone Sax
68 Oboe
69 English Horn
70 Bassoon
71 Clarinet

Pipe:
72 Piccolo
73 Flute
74 Recorder
75 Pan Flute
76 Blown Bottle
77 Shakuhachi
78 Whistle
79 Ocarina

Synth Lead:
80 Lead 1 (square)
81 Lead 2 (sawtooth)
82 Lead 3 (calliope)
83 Lead 4 (chiff)
84 Lead 5 (charang)
85 Lead 6 (voice)
86 Lead 7 (fifths)
87 Lead 8 (bass + lead)

Synth Pad:
88 Pad 1 (new age)
89 Pad 2 (warm)
90 Pad 3 (polysynth)
91 Pad 4 (choir)
92 Pad 5 (bowed)
93 Pad 6 (metallic)
94 Pad 7 (halo)
95 Pad 8 (sweep)

Synth Effects:
96 FX 1 (rain)
97 FX 2 (soundtrack)
98 FX 3 (crystal)
99 FX 4 (atmosphere)
100 FX 5 (brightness)
101 FX 6 (goblins)
102 FX 7 (echoes)
103 FX 8 (sci-fi)

Ethnic:
104 Sitar
105 Banjo
106 Shamisen
107 Koto
108 Kalimba
109 Bag pipe
110 Fiddle
111 Shanai

Percussive:
112 Tinkle Bell
113 Agogo
114 Steel Drums
115 Woodblock
116 Taiko Drum
117 Melodic Tom
118 Synth Drum

Sound effects:
119 Reverse Cymbal
120 Guitar Fret Noise
121 Breath Noise

122 Seashore
123 Bird Tweet
124 Telephone Ring

125 Helicopter
126 Applause
127 Gunshot

9.4. Speech
LIST VOICES
prints list of voices to the screen.

LIST VOICES TO A$,N
saves list of voices for SAY command to string array [a$] and size of returned array

collected and edited by 'Dutchman' Ton Nillesen 65

to numeric variable [n].

SAY CONTINUE
continues text pronunciation, paused by SAY PAUSE command.

SAY PAUSE
pauses text pronunciation, started by SAY TEXT command.

SAY PITCH X
sets voice pitch for command SAY TEXT to the value [x].
Valid values are from 0 to 2. By default 1.

SAY RATE X
sets speech rate for command SAY TEXT to the value [x]. Valid values are from 0 to
2. By default 1.

SAY STOP
stops text pronunciation, started by SAY TEXT command.

SAY TEXT T$
says text [t$] with voice. Requires iOS 7 and newer.

SAY VOICE V$
sets voice for SAY TEXT command. List of available voices you can get with LIST
VOICES command. Empty string "" sets native voice.

SAY VOLUME X
sets volume for command SAY TEXT to the value [x]. Valid values are from 0 to 1.
By default 1.

SAYING ()
returns 1 if speech is currently pronounced by SAY TEXT command, otherwise re-
turns 0.

10. Networking
To display contents of a webpage, a browser should be created on the current
page. See subchapter 5.9. “Browsers” on page 36 in “Interface objects“

About HTTP communication
If error prevents HTTP command from execution, then error message can be re-
ceived by HTTP_ERROR$() function. If server returns response after execution of
HTTP command, then this response can be received by HTTP_RESPONSE$()
function. This can be useful when executing HTTP POST and HTTP POSTDIM
commands, which send data to server and have no input parameters.
When executing HTTP commands it is optionally possible to set values which are
present in HTTP request header. For this purpose one-dimensional string array in
HEADER parameter of HTTP commands is used, elements of this array should be
strings formatted as "header_field : value", for example:

s$ = "This is my message to server"
h$(1) = "content-type:text/html"
h$(2) = "content-length:"&len(s$)
HTTP "posttestserver.com/post.php" HEADER h$ POST s$
PRINT HTTP_RESPONSE$()

Simple web browser
On the forum a simple web browser has been posted by 'Dave', As it is realized in
SmartBasic, it can be adapted to your own needs. “Simple web browser with book-

66 Smart Basic Reference Manual © Mr. Kibernetik

marks (iPad/iPhone/iPod touch)” can be found on
http://nitisara.ru/forum/viewtopic.php?f=20&t=854

HTTP URL$ HEADER H$ GET T$
performs HTTP GET request to address [url$] and stores server response to string
variable [t$]. HEADER parameter defines contents of HTTP request header and is
optional, but if used then [h$] must be one-dimensional string array; see its format
details in preface.
Example:

HTTP "nitisara.ru" GET t$
PRINT t$

HTTP URL$ HEADER H$ GETDIM M, N
performs HTTP GET request to address [url$] and stores server response to one-di-
mensional numeric array [m].
Size of array [m] is changed according to amount of data received and is stored to
numeric variable [n], which is optional.
HEADER parameter defines contents of HTTP request header andis optional, but if
used then [h$] must be one-dimensional string array; see details in preface.
Example:

HTTP "google.com/images/logo.png" GETDIM m
FILE "google.png" WRITEDIM m

HTTP URL$ HEADER H$ HEAD T$
performs HTTP HEAD request to address [url$] and stores server response to
string variable [t$].
HEADER parameter defines contents of HTTP request header and is optional, but if
used then [h$] must be one-dimensional string array; see its format details in prefa-
ce.

Example:
HTTP "apple.com" HEAD t$
PRINT t$

HTTP URL$ HEADER H$ POST T$
performs HTTP POST request with contents of [t$] to address [url$]. HEADER para-
meter defines contents of HTTP request header and is optional, but if used then
[h$] must be one-dimensional string array; see its format details in preface.

HTTP URL$ HEADER H$ POSTDIM M, N
performs HTTP POST request to address [url$], contents of request is taken from
one-dimensional numeric array [m] as [n] number of bytes.
Array [m] must contain only values from 0 to 255.
If bytes to send [n] is omitted then all contents of array [m] will be sent. HEADER
parameter defines contents of HTTP request header and is optional, but if used
then [h$] must be one-dimensional string array. See its format details in preface.
Example:

FILE "image.jpg" READDIM m,n
h$(1) = "content-type:image/jpeg"
h$(2) = "content-length:" & n
HTTP url$ HEADER h$ POSTDIM m

HTTP_ERROR$ ()
returns error message if error occurred when executing last HTTP command. If
command was executed without errors then empty string "" is returned.

http://nitisara.ru/forum/viewtopic.php?f=20&t=854

collected and edited by 'Dutchman' Ton Nillesen 67

HTTP_HEADER$ ()
returns HTTP header of last HTTP command response.

HTTP_RESPONSE$ ()
returns server response on last HTTP command.
If server responded nothing then empty string "" is returned.
Example:

HTTP "posttestserver.com" POST "Help me!"
PRINT HTTP_RESPONSE$()

HTTP_STATUS ()
returns HTTP status code of last HTTP command response.
See RFC 2616 for HTTP status code details.
Note: “RFC 2616” is superseded and split into several documents. See info on

https://www.mnot.net/blog/2014/06/07/rfc2616_is_dead

PING (H$)
performs ping of host [h$] and returns 1 if host is available or 0 if not.

PING (H$,P)
performs ping of port [p] of host [h$] and returns 1 if port is available or 0 if not.

SYSTEM_EXT_IP$ ()
returns external IP address of device. If unavailable then returns empty string "".

SYSTEM_INT_IP$ ()
returns local IP address of device. If unavailable then returns empty string "".

11. Miscellaneous

11.1. Date and Time functions
CURRENT_YEAR () returns current year

CURRENT_MONTH () returns current month. (january=1, …)

CURRENT_DATE () returns current day of month

CURRENT_DAY () returns current day of the week (sunday=0, …)

CURRENT_HOUR () returns current hour

CURRENT_MINUTE () returns current minute

CURRENT_SECOND () returns current second

PAUSE X
pauses program for [x] seconds.

TIME ()
returns time since program start or since time reset by TIME RESET command, in
seconds.

TIME RESET
sets to 0 time, returned by TIME () function.

11.2. Program launch and discontinuing
DEBUG PAUSE
pauses program execution and displays debug screen with contents of all variables
at this moment.

https://www.mnot.net/blog/2014/06/07/rfc2616_is_dead

68 Smart Basic Reference Manual © Mr. Kibernetik

DEBUG PAUSE X
performs DEBUG PAUSE command, but at first delays for [x] seconds.

END
ends program execution.

EXIT
ends program execution and quits application.

LAUNCHER$ ()
returns string indicating how the program was launched: "appstore" if as a stand-
alone application; "basic" if from smart BASIC application; "desktop" if by desktop
icon.

PAUSE X
pauses program for [x] seconds.

RUN N$
runs program with name [n$]. It is the same as ending your current program, load-
ing file with name [n$] and running it. You can omit ".txt" extension in file name.

SLOWDOWN
makes CPU idle for a short time period, thus reducing power consumption.
This command can be used in waiting cycles, for example when waiting for button
press, and also in looping places where execution speed is not as important as low
power consumption.
For example, this program uses CPU at 100% while performing simple looping:

1 GOTO 1
and the following program leaves CPU almost idle although looping much slower
because of short CPU pause in SLOWDOWN command:

1 SLOWDOWN
GOTO 1

STOP
terminates program execution. This is the same as terminating program with (X)
button.

11.3. GPS
To receive GPS data you need to turn on GPS with command SET GPS ON.
GPS data are accumulating as they arrive, and GPS_COUNT() function returns
number of accumulated GPS locations. Every GPS location contains latitude, longi-
tude, altitude, speed, course, horizontal and vertical accuracies of current point.
GPS data can be read with GET GPS command.
Example programs can be found in the folder '/Examples/Hardware'
Note for earliest iPad-users (from: http://ipad.about.com):

“The Wi-Fi model of the iPad does not have an Assisted-GPS chip, but it can
locate the user by using Wi-Fi triangulation. This isn't quite as accurate as
Assisted-GPS, but it is fairly accurate.”

Without built-in GPS you will need some kind of connection (cellular or wifi) to get
location information.

COMPASS_ACCURACY ()
returns current compass accuracy (if compass is present), measured in degrees. If
accuracy is undefined or if interference is strong returns -1.

collected and edited by 'Dutchman' Ton Nillesen 69

COMPASS_HEADING ()
returns current direction relative to true north, obtained from electronic compass (if
present). Heading is defined by top side of program interface and is measured in
degrees, from 0 to 360. If direction is undefined then returns -1.

GET GPS LAT X LON Y ALT Z SPD S CRS C HAC H VAC V
saves GPS latitude to [x], longitude to [y], altitude to [z], speed to [s], course to [c],
horizontal accuracy to [h] and vertical accuracy to [v].
Latitude, longitude and course are measured in degrees, height and accuracy - in
meters, speed - in meters per second.
If parameter is currently undefined then returns -1.
Accuracy value -1 means that respective data are invalid. Any parameter is option-
al, but at least one must be used. Parameters order is arbitrary.
Examples:

GET GPS ALT altitude
GET GPS LAT x LON y ALT z
GET GPS COURSE m(0) SPEED m(1)

GPS_COUNT ()
returns number of pending GPS positions.

GET GPS DIRECTION H
gets GPS data of current direction and saves it to numeric variable [h]. Direction is
measured in degrees.

SET GPS OFF
SET GPS ON
turns on and turns off GPS. ON = enabled, OFF = disabled.

Notes on GPS data
About GPS data access
GPS supplies its data not when you need them but when they are available. And
GPS is not waiting for your program to receive its data - either you read them right
now or you miss them.
That is why smart BASIC buffers all GPS data and allows you to read them with
your own speed without fear that you missed something. If you don't need complete
route but only latest value then you can skip all data and use only latest one.
GPS supply its data very fast (many times per second), and they all are stacked in
memory until you read them. So, asking for new data only once a minute means ac-
cessing only very old GPS readings. This means you need to call 'GET GPS' until
'GPS_COUNT()' is zero, otherwise you accumulate unread GPS data.

About speed and distance
The distance traveled in a brief interval during a trip can be calculated, of course, as
the difference between the coordinates of the start and end. At small distances how-
ever, so at low speeds and short intervals, that method gives inaccurate results.
In that case and actually in general, the lap-distance can better be calculated by
multiplying the speed with the time interval.
GPS receivers typically calculate velocity by measuring the frequency shift (Doppler
shift) of the GPS carrier-signal in three dimensions. Velocity accuracy can be scen-
ario dependent, (multi-path, obstructed sky view from the dash of a car, mountains,
city canyons, …) but 0.2 m/sec per axis is achievable. This accuracy of 20cm is not
possible by calculating the distance between two GPS-coordinates.

70 Smart Basic Reference Manual © Mr. Kibernetik

About global distances
The distance between locations is determined by the angle between the coordin-
ates and the distance to the reference-point. The GPS-system reference-level for
the distance to the reference point is the so-called WGS84 mean earth radius which
is determined at 6371.008666 km.
See info at Wikipedia: https://en.wikipedia.org/wiki/World_Geodetic_System
The 'radius' at your position is increased with the height above sea-level as in the
following code. The formula for distance is from Wikipedia:

https://en.wikipedia.org/wiki/Great-circle_distance

OPTION ANGLE DEGREES
TwoPI= 6.28318531
'
'--- Function, 'Lat'=latitude, 'Long'=longitude
DEF Distance(lat1,lon1,lat2,lon2,alt)
'alt is average: (alt1+alt2)/2
dLong=ABS(lon1-lon2)
term1=SIN(Lat1)*SIN(Lat2)
term2=COS(Lat1)*COS(Lat2)*COS(dLong)
Angle=ACOS(term1+term2)
dist=Angle/360*.TwoPi*(6371008.666+alt)
RETURN dist
END DEF

11.4. Device properties
ACCEL_X ()

ACCEL_Y ()

ACCEL_Z ()
return device acceleration values on "x", "y" and "z" axes. Accelerometer "x" and "y"
axes are identical to screen axes, and "z" axis is perpendicular to screen.
Accelerometer also responds to device rotation.

BATTERY_LEVEL ()
returns current battery charge level, from 0 to 100 percent.

BATTERY_STATE ()
returns current battery charging state: 0 is discharging, 1 is charging.

DEVICE_TYPE$ ()
returns device type. Possible values: "iPad", "iPhone".

DEVICE_NAME$ ()
returns device name.

GET ORIENTATION P
saves current interface orientation to numeric variable [p].
1=portrait orientation
2=landscape orientation with "Home" button on the left
3=portrait orientation upside down
4=landscape orientation with "Home" button on the right

KEYBOARD_VISIBLE ()
returns 1 if screen keyboard is currently visible. Otherwise returns 0. This function
works only when the keyboard is solid and is at the bottom of the screen (external
keyboard connected via Bluetooth).

https://en.wikipedia.org/wiki/Great-circle_distance
https://en.wikipedia.org/wiki/World_Geodetic_System

collected and edited by 'Dutchman' Ton Nillesen 71

LAUNCHER$ ()
returns string indicating how the program was launched: "appstore" if as a stand-
alone application; "basic" if from smart BASIC application; "desktop" if by desktop
icon.

OPTION SCREENLOCK OFF
OPTION SCREENLOCK ON
turn off/on idle device screen locking when program is running.
If your device is left idle for a specified amount time, its screen locks and turns off.
You can disable this idle screen locking with OPTION SCREENLOCK OFF/ON
command to prevent your device from switching off when your program is running.

SET BRIGHTNESS X
sets screen brightness to the value [x]. Possible values of [x] are from 0 to 1.

SET ORIENTATION ALL
SET ORIENTATION 0
unlocks orientation.

SET ORIENTATION TOP
SET ORIENTATION BOTTOM
SET ORIENTATION LEFT
SET ORIENTATION RIGHT
SET ORIENTATION PORTRAIT
SET ORIENTATION VERTICAL
SET ORIENTATION LANDSCAPE
SET ORIENTATION HORIZONTAL
sets device interface orientation.

SET ORIENTATION P
sets device interface orientation according to value [p].
[p]=0: unlocks orientation
[p]=1: sets portrait orientation
]p]=2: landscape orientation with "Home" button on the left
[p]=3: portrait orientation upside down
[p]=4: landscape orientation with "Home" button on the right
[p]=5: portrait orientation with any direction
[p]=6: landscape orientation with any direction

SET TOOLBAR BATTERY OFF

SET TOOLBAR BATTERY ON
turns OFF and turns ON display of battery charge level on the top control toolbar.

SET TOOLBAR TIME OFF

SET TOOLBAR TIME ON
turns OFF and turns ON display of current time on the top control toolbar.

SLOWDOWN
makes CPU idle for a short time period, thus reducing power consumption.
This command can be used in waiting cycles, for example when waiting for button
press, and also in looping places where execution speed is not as important as low
power consumption. For example, this program uses CPU at 100% while perform-
ing simple looping:

1 GOTO 1

72 Smart Basic Reference Manual © Mr. Kibernetik

and this program leaves CPU almost idle although looping much slower because of
short CPU pause in SLOWDOWN command:

1 SLOWDOWN
GOTO 1

SYSTEM_LANGUAGE$ ()
returns current user language in format ISO 639-1.

SYSTEM_VERSION()
returns iOS version number.

SYSTEM_VOLUME ()
returns current device volume level, from 0 to 1.

11.5. Available fonts
LIST FONTS
Prints list of available fonts to the screen.

LIST FONTS TO A$,N
Saves list of available fonts to string array [a$] and size of returned array to numeric
variable [n].

12. User interface settings

12.1. Vibration
If the device supports vibration, then haptic feedback can be obtained with the fol-
lowing commands

VIBRATE

VIBRATE ERROR

VIBRATE HARD

VIBRATE LIGHT

VIBRATE MEDIUM

VIBRATE SUCCESS
performs haptic feedback using vibration, in several variants.
Without parameters is equal to HARD.
Usage example:

print "light"
vibrate light
pause 1
print "medium"
vibrate medium
pause 1
print "hard"
vibrate hard
pause 1
print "success"
vibrate success
pause 1
print "error"
vibrate error
pause 1
print "hard"
vibrate

collected and edited by 'Dutchman' Ton Nillesen 73

END
See https://apple.co/3omM84t for some application information

12.2. Text encoding/decoding
Smart BASIC allows you to encode text of the program. Encoded program can be
run, but its text is not available for any user.
To encode program you need to:
• Input coding password using OPTION CODEPASS command.
• Rename program by changing file's extension from .TXT to .COD

Program file with .COD extension is a coded program. It can be run or included in-
side another program, but its text cannot be viewed or edited.
Coded program can be decoded only if the same password is set which was used
when encoding the program.
To decode already encoded program you need to:
• Input the same coding password which was used when encoding the program

using OPTION CODEPASS command.
• Rename program by changing file's extension from .COD to .TXT

There is no need to input coding password each time when encoding or decoding.
Coding password can be entered only once, and it will be saved.

Note from the forum
Code:

OPTION CODEPASS "password"

where "password" is your password.
This should be done NOT IN YOUR CODED program. This should be done
in a separate program - this is just a one-time setting for your device.
And this is enough. This should be done ONLY ONCE. You will not need to
do it ever again: your device will remember it.
After you set your password, you will be able to encode ANY your programs
with this password.
You may ask: why you need to set a password at all?
Answer: it will be possible to decode encoded program ONLY if the device
where program should be decoded is set to the same password as you set
before.

OPTION CODEPASS P$
enters password [p$] for program text encoding/decoding. Password is saved inside
the device.

12.3. UNDO/REDO when editing code
On iPhone shake your device to get dialog to undo editing.
On iPad UNDO / REDO buttons are present on additional keyboard layout.

12.4. Code marking
You can set tinted background in code editor for any lines of your code. To do this
you need to set special color marks in the beginning of code line. Color marks are:
'r', 'g', 'b', 'c', 'm', 'y' for red, green, blue, cyan, magenta and yellow tint colors re-
spectively. If you need to stop colouring at some line, use '' (two ' characters) color
mark.

https://developer.apple.com/design/human-interface-guidelines/patterns/playing-haptics/

74 Smart Basic Reference Manual © Mr. Kibernetik

Example of tinted code:
'r'
PRINT A 'line with red tint
'g'
PRINT B1 'lines with green tint
PRINT B2
''
PRINT C 'line without tint
'b'
PRINT D 'line with blue tint

Tinting is applied to background of any color. Tinting is available for iOS 5.0 and
higher.

12.5. App preferences and presets
The following commands should be executed to set global preferences or to per-
form other single-time operations. These settings are permanent until reset.

SET EDITOR CAPSYNTAX OFF
SET EDITOR CAPSYNTAX ON
turns ON or turns OFF automatic smart BASIC language keywords highlighting with
capital letters in code editor during text editing. This setting changes the text of pro-
gram, not only its visual representation. This effect cannot be undone.

SET EDITOR DEFAULT
sets editor font settings to default.

SET EDITOR BACK COLOR R,G,B
sets editor background color to value with red [r], green [g] and blue [b] compo-
nents. Valid values are from 0 to 1.

SET EDITOR FONT COLOR R,G,B
sets editor font color to value with red [r], green [g] and blue [b] components. Valid
values are from 0 to 1.

SET EDITOR FONT NAME N$
sets name of editor font to [n$]. List of fonts you can get by command LIST FONTS.

SET EDITOR FONT SIZE N
sets size of editor font to value [n].

SET UNDERGROUND OFF

SET UNDERGROUND ON
turns OFF or turns ON the main, most power-consumptive calculation cycle of ap-
plication when application is sent to background. By default underground is off, i.e.
application is NOT active when it is in the background.

12.6. Custom skins
After SET UI commands, which set user interface settings, SET UI APPLY com-

Fit font-size to screen-width
with monospaced fonts, e.g. “Courier” or "Menlo-Regular", the number of charac-
ters per line can be determined with the following code:

GET SCREEN SIZE sw,sh
fmin=10 'minimum fontsize
fsize=MAX((sw-20)/(0.6*n),fmin)
SET EDITOR FONT SIZE fsize

collected and edited by 'Dutchman' Ton Nillesen 75

mand should be used, which makes settings to be applied.
When setting images, RETINA versions of these images can be used together with
main images. RETINA version of image has double resolution and "@2x" charac-
ters at the end of file name.
For example, when using command:

SET UI RUN ICON "image.png"
"image@2x.png" image can be used together with "image.png" image. In this case
if device screen is standard then "image.png" is used, if screen is RETINA then "im-
age@2x.png" image is automatically used.

SET UI APPLY
applies user interface settings.

SET UI COPY ICON N$
sets icon for copy files operation from file [n$].

SET UI CUT ICON N$
sets icon for cut files operation from file [n$].

SET UI DEBUG BACK N$
sets debug window background from file [n$].

SET UI DEBUG FONT_COLOR R,G,B
sets debug table font color to value with red [r], green [g] and blue [b] components.
Valid values are from 0 to 1.

SET UI DEBUG FONT_NAME N$
sets name of debug table font to [n$].

SET UI DEBUG FONT_SIZE N
sets size of debug table font to value [n].

SET UI DEBUG TABLE_COLOR R,G,B
sets debug table color to value with red [r], green [g] and blue [b] components.
Valid values are from 0 to 1.

SET UI DEFAULT
sets user interface settings to default.

SET UI DELETE ICON N$
sets icon for delete files operation from file [n$].

SET UI EDIT ICON N$
sets icon to edit program text from file [n$].

SET UI ENTER ICON N$
sets icon to go next operation from file [n$].

SET UI EXIT ICON N$
sets icon to return back operation from file [n$].

SET UI FILE_BAR BACK N$
sets file bar background from file [n$].

SET UI FILE_BAR FONT_COLOR R,G,B
sets file bar icon titles font color to value with red [r], green [g] and blue [b] compon-
ents. Valid values are from 0 to 1.

SET UI FILE_BAR FONT_FILE F$
sets font file [f$], if file bar icon titles use third-party TTF-font.

76 Smart Basic Reference Manual © Mr. Kibernetik

SET UI FILE_BAR FONT_NAME N$
sets name of file bar icon titles font to [n$].

SET UI FILE_BAR FONT_SIZE N
sets size of file bar icon titles font to value [n].

SET UI FILES BACK N$
sets files list window background from file [n$].

SET UI FILES COPY_BACK N$
sets selected file to copy background from file [n$].

SET UI FILES CUT_BACK N$
sets selected file to cut background from file [n$].

SET UI FILES FONT_COLOR R,G,B
sets files list font color to value with red [r], green [g] and blue [b] components.
Valid values are from 0 to 1.

SET UI FILES FONT_NAME N$
sets name of files list font to [n$].

SET UI FILES FONT_FILE F$
sets font file [f$], if files list uses third-party TTF-font.

SET UI FILES FONT_SIZE N
sets size of files list font to value [n].

SET UI FILES ICON N$
sets icon to display files list from file [n$].

SET UI FILES SELECT_BACK N$
sets selected file background from file [n$].

SET UI FILES SELECT_COLOR R,G,B
sets selected file font color to value with red [r], green [g] and blue [b] components.
Valid values are from 0 to 1.

SET UI FORUM ICON N$
sets icon to visit Support Forum from file [n$].

SET UI GRAPHICS BACK N$
sets graphics window background from file [n$].

SET UI HELP ICON N$
sets icon to show help from file [n$].

SET UI NEW_FILE ICON N$
sets icon to create new program file from file [n$].

SET UI NEW_FOLDER ICON N$
sets icon for create new folder operation from file [n$].

SET UI PASTE ICON N$
sets icon for paste files operation from file [n$].

SET UI PAUSE ICON N$
sets icon to pause program execution from file [n$].

SET UI PREVIEW ICON N$
sets icon to preview image file from file [n$].

SET UI RENAME ICON N$
sets icon for rename file operation from file [n$].

collected and edited by 'Dutchman' Ton Nillesen 77

SET UI RUN ICON N$
sets icon to run program from file [n$].

SET UI SEARCH ICON N$
sets icon to search text from file [n$].

SET UI STOP ICON N$
sets icon to stop program execution from file [n$].

SET UI TOOL_BAR BACK N$
sets tool bar background from file [n$].

SET UI TOOL_BAR FONT_COLOR R,G,B
sets tool bar font color to value with red [r], green [g] and blue [b] components.
Valid values are from 0 to 1.

SET UI TOOL_BAR FONT_FILE F$
sets font file [f$], if toolbar uses third-party TTF-font.

SET UI TOOL_BAR FONT_NAME N$
sets name of tool bar font to [n$].

SET UI TOOL_BAR FONT_SIZE N
sets size of tool bar font to value [n].

SET UI TOOL_BAR ICONS_COLOR R,G,B
sets tool bar icons color to value with red [r], green [g] and blue [b] components.

13. Notes
• Using libraries

You can insert contents of another program file in your program by using "{}" brack-
ets. For example, code:

{library.txt}
will insert text from file "library.txt" at this place in your program. You can omit exten-
sion ".txt" and if you write it like this:

{library}
then smart BASIC will understand that you want the contents of file "library.txt" here.
If file should be inserted only if it was not inserted yet, file name should be inclosed
in double brackets:

{{library}}
This is a pre-processing feature, so at first smart BASIC combines all files into one
code and only then it executes the program.
If error occurs then smart BASIC loads that file which contained the error to display.
It is suggested for you to create "lib" folder in the root of your file system and to
keep all your code libraries there. Then you can access your library from any file in
any folder like this:

{/lib/functions}
{/lib/const}

Slash character '/' before "lib" indicates that this is a root folder. It will make your lib-
rary to be path-independent from your program files. Also it will be compatible if you
share your programs and libraries with others.

78 Smart Basic Reference Manual © Mr. Kibernetik

Commands starting with "END" like END IF, END DEF and so on, can be written in
one word as ENDIF, ENDDEF.

• Code autosave
Code is automatically saved when you run the program or when exit editing mode.

• Duplicating your code
You can duplicate program by copying the file and pasting it back to the same
folder. A new file is then created by adding word "copy" to the file name. If that file
already existed then it is deleted and replaced with fresh copy of file.
For example, if you duplicate file "program.txt" then its copy with name "program
copy.txt" will be created. If file "program copy.txt" already existed then it will be re-
placed with fresh copy.

• Hiding keyboard
You can hide keyboard when editing your code by pressing program title on the top
toolbar.

• Running program with desktop icon
Steps to create desktop icon:

• Open blank page in Safari browser.
• In address-line write link to the program which will be launched with this icon.

Link is written as address "http://nitisara.ru/sb.php?" and then path to the pro-
gram.
Space character can be substituted with "%20" characters.
File extension ".txt" and root folder "/" can be omitted. Other extensions, e.g.
“.sb” should be given.
Example: to run "hello world.txt" program from root folder the address will be:
https://nitisara.ru/sb.php?hello%20world

• Go to this address in Safari. Safari launches the program which is indicated in
the link.

• Return back to Safari to the page which
run the program and perform standard
export of this link to the desktop. It will
then ask for a name. You can add it or
change the default name if that occurs.
After completion the icon will occur on
the desktop as a brown 'basic' icon with
the chosen name below.

• The figure shows an example on a
screen section with custom name
(“Launcher”) and default image next to
the icon of Smart Basic

• When you start the 'Launcher' program
in this way, you get immediate access to
your preferred apps.
See https://nitisara.ru/forum/viewtopic.php?t=1512 (program)

and http://nitisara.ru/forum/viewtopic.php?p=9193 (protocol)

•Your program in App Store
• You can share your creation with millions of people!

Customised desktop launcher

https://nitisara.ru/sb.php?hello%20world
http://nitisara.ru/sb.php?

collected and edited by 'Dutchman' Ton Nillesen 79

• See instructions on the forum:
 http://nitisara.ru/forum/viewforum.php?f=34

• Support forum
Visit forum (http://nitisara.ru/forum) to share and discuss program-
ming topics in English and Russian.

http://nitisara.ru/forum
http://nitisara.ru/forum/viewforum.php?f=34
http://nitisara.ru/forum/viewtopic.php?p=9193
https://nitisara.ru/forum/viewtopic.php?t=1512

80 Smart Basic Reference Manual © Mr. Kibernetik

14. Examples
The folder 'Examples' contains several folders with example-programs. These pro-
grams can be modified in order to get experience with the functions and commands.

RESTORE EXAMPLES
restores deleted or modified example files.

Content of 'Examples':

Complex numbers
fractal in colors
simple complex

Editor Settings
black and white
blue night
default
fairy
gold day
gold night
iOS 5 fonts list
night vision
typewriter

Games
15
MAZER
interactive fractal
life
Folders:

In Cell

Graphics
circles
color lines
color pixels
flying turtle
interactive turtle
pollution
round fun
sierpinski
winter
Folders:

images

Hardware
GPS
accelerometer
my GPS position
photo camera
video camera

Interactive Interface
bar graphs
browsers
multitouch
pages
painter 2
painter
palette demo pie
palette parameters
pseudo depth
sin + cos
speech
Images:

flower.jpg
Folders:

Motion Detector

Music & Sound
notes.txt
play MIDI file
sfx test 2
sfx test
synthesizer
Folders:

files

Simple
heavy math

Skins
blue skin
default
Folders:

files

Smart Features
I am a hardcore coder
code highlighting
using libraries
Folders:

lib

Sprites
collide me
every frame
fall 'n' crash
screen intro
sprite creator
sprite delay
sprites position
Images:

knight6.png

collected and edited by 'Dutchman' Ton Nillesen 81

Appendix A. Obsolete commands
The following commands are obsolete and replaced by new commands. Obsolete
commands will work as they always worked, but they are just not documented any-
more.

• Obsolete in version 2.5 and later
- DEBUG ON/OFF, replaced by: DEBUG PAUSE

• Obsolete in version 3.0 and later
- GET GPS DIRECTION, replaced by: COMPASS_HEADING ()
- GPS_POSITION_AVAILABLE() and
- GPS_DIRECTION_AVAILABLE()

replaced by: GPS_COUNT ()
- GET GPS POSITION

replaced by: GET GPS LAT x LON y ALT z SPD s CRS c HAC h VAC v

• Obsolete in version 4.0 and later
- GRAPHICS LOCK / UNLOCK, replaced by: REFRESH
- IOS_VERSION (), replaced by: SYSTEM_VERSION()

• Obsolete in version 4.2 and later
- SLIDER N$ VALUE K AT X,Y HSIZE S
- SLIDER N$ VALUE K AT X,Y VSIZE S

Use SLIDER N$ VALUE K AT X,Y SIZE S ANGLE A instead

• Obsolete in version 4.6 and later
- BUTTON SET TITLE replaced by: BUTTON SET TEXT
- BUTTON TITLE replaced by: BUTTON TEXT
- TIMER RESET replaced by: TIME RESET
- TIMER() replaced by: TIME()

• Obsolete in version 4.8 and later
 and are replaced by => new equivalents:
- BROWSER SET TEXT => BROWSER TEXT
- BROWSER SET URL => BROWSER URL
- BUTTON SET TEXT => BUTTON TEXT
- FIELD SET TEXT => FIELD TEXT
- LIST SET SELECTION => LIST SELECT
- LIST SET TEXT => LIST TEXT
- SLIDER SET VALUE => SLIDER VALUE
- SWITCH SET STATE => SWITCH STATE

• Obsolete in version 6.0 and later
- OPTION DROPBOX OFF
- OPTION DROPBOX ON
- SET UI CLOUD_IN ICON N$
- SET UI CLOUD_OUT ICON N$

	Personal notes
	Modifications since previous manual version 6-6
	1. Basics
	1.1. Variables
	1.2. Arrays
	1.3. Expressions
	1.4. Loops & Jumps
	1.5. Subroutines
	1.6. Remarks and comments
	1.7. User functions
	1.8. Comparison and Logical operators
	1.9. Scope variables

	2. Input & output
	2.1. Touch handling
	2.2. Input from keyboard or file
	User interface with INPUT command

	2.3. Built-in data
	2.4. Camera
	Importing GIF-files

	2.5. Phone
	2.6. Clipboard
	2.7. Print

	3. Math functions
	3.1. General operations and functions
	3.2. Complex numbers
	3.3. Arithmetic
	3.4. Trigonometry
	3.5. Logic

	4. String functions
	5. Interface objects
	5.1. About pages
	5.2. Presets
	5.3. Handling existing objects
	5.3.1 Listings of available objects
	5.3.2 Changing and testing visibility
	5.3.3 About sizing for different devices

	5.4. Buttons
	5.5. Switches
	5.6. Sliders
	5.7. List panels
	5.8. Text Fields
	5.9. Browsers

	6. Files & folders
	6.1. Current, parent and root directory
	6.2. File writing options
	6.3. Directory commands and functions
	6.4. File commands and functions
	6.5. Compression and decompression

	7. Display on screen
	7.1. Screen characteristics
	7.2. Text view
	7.2.1 Text output styling

	7.3. Graphics view
	7.3.1 Handling Retina display resolution
	7.3.2 Presets
	7.3.3 Draw text
	7.3.4 Draw pixels
	7.3.5 Draw lines
	7.3.6 Draw figures
	7.3.7 Images and screenshots

	8. Sprites
	8.1. General
	8.1.1 Initial commands
	8.1.2 Sprite visibility
	8.1.3 Animation
	8.1.4 Sprite display priority

	8.2. Sprite presets
	8.3. Get sprite info
	8.4. Sprite creation, loading, saving and initiation
	8.5. Positioning and moving sprites
	8.6. Sprite order rules
	8.7. Multi-frame sprites

	9. Music, sound and speech
	9.1. Playing audio files
	9.2. Playing musical notes and MIDI compositions
	9.3. Default Musical instruments
	9.4. Speech

	10. Networking
	11. Miscellaneous
	11.1. Date and Time functions
	11.2. Program launch and discontinuing
	11.3. GPS
	Notes on GPS data

	11.4. Device properties
	11.5. Available fonts

	12. User interface settings
	12.1. Vibration
	12.2. Text encoding/decoding
	12.3. UNDO/REDO when editing code
	12.4. Code marking
	12.5. App preferences and presets
	12.6. Custom skins

	13. Notes
	14. Examples
	Appendix A. Obsolete commands

