ECMA

EUROPEAN COMPUTER MANUFACTURERS ASSOCIATION

STANDARD ECMA-55

Minimal BASIC

January 1978

Free copies of this ECMA standard are available from
ECMA European Computer Manufacturers Association

114 Rue du Rhone - 1204 Geneva (Switzerland)

ECMA

EUROPEAN COMPUTER MANUFACTURERS ASSOCIATION

STANDARD ECMA-55

Minimal BASIC

January 1978

-jv -

BRI EF H STORY

The first version of the |anguage BASIC, acronym for Beginner's
Al | - purpose Synbolic Instruction Code, was produced in 1964 at

the Dartnouth College in the USA. This version of the | anguage

was oriented towards interactive use. Subsequently, a nunber of
i npl enent ati ons of the | anguage were prepared, that differed in
part fromthe original one.

In 1974, the ECVA General Assenbly recognized the need for a
standardi zed version of the |anguage, and in Septenber 1974 the
first neeting of the ECMA Commttee TC 21, BASIC, took place. In
January 1974, a corresponding conmttee, X3J2, had been founded
in the USA

Through a strict co-operation it was possible to maintain ful
conpatibility between the ANSI and ECVA draft standards. The
ANSI one was distributed for public comments in January 1976,
and a nunber of comments were presented by ECVA

A final version of the ECVA Standard was prepared at the
nmeeting of June 1977 and adopted by the General Assenbly of
ECVA on Dec. 14, 1977 as Standard ECMA-55.

20.

V

TABLE OF CONTENTS

SCOPE
REFERENCES
DEFINITIONS

BASIC

Batch Mode
End-of-Line
Error

Exception
Identifier
Interactive Mode
Keyword

Line

.10 Nesting

.11 Print Zone

.12 Rounding

.13 Significant Digits
.14 Truncation

CHARACTERS AND STRINGS
PROGRAMS

CONSTANTS

VARIABLES

EXPRESSIONS

IMPLEMENTATION SUPPLIED FUNCTIONS
USER DEFINED FUNCTIONS

LET STATEMENT

CONTROL STATEMENTS

FOR AND NEXT STATEMENTS
PRINT STATEMENT

INPUT STATEMENT

READ AND RESTORE STATEMENTS

OooNOUVTDS WN R

WWWwwwwwwwwwwww

DATA STATEMENT
ARRAY DECLARATIONS
REMARK STATEMENT
RANDOMIZE STATEMENT

TABLE 1 - BASIC Character Set
TABLE 2 - BASIC Code

APPENDIX 1 - Organization of the Standard

APPENDIX 2 - Method of Syntax Specification
APPENDIX 3 - Conformance

APPENDIX 4 - Implementation-defined Features

U
o))
)

O 00 O UI W WWWWHMNNNNNNNNRER R R

W W W W N N NIND-NRNNDNRRRRR R
or A NN O ©OW 0 OO O LT »h W KR O N UV D W R

1. SCOPE

This Standard ECMA-55 is designed to pronote the interchangeabi -
ity of BASIC prograns anong a variety of automatic data process-
i ng systems. Subsequent Standards for the sane purpose wll de-
scri be extensions and enhancenents to this Standard. Prograns
conformng to this Standard, as opposed to extensions or enhance-
ments of this Standard, will be said to be witten in "M nim
BASI C'.

This Standard establi shes:
— The syntax of a programwitten in Mniml BASIC

— The formats of data and the precision and range of nuneric re-
presentations which are acceptable as input to an automatic data
processi ng system being controlled by a programwitten in
M ni mal BASI C

— The formats of data and the precision and range of nuneric re-
presentati ons which can be generated as output by an automatic
data processing system being controlled by a programwitten in
M ni mal BASI C

— The semantic rules for interpreting the meaning of a program
witten in Mninml BASIC

— The errors and exceptional circunstances which shall be detected
and al so the manner in which such errors and exceptional cir-
cunst ances shal |l be handl ed.

Al t hough the BASIC | anguage was originally designed primarily for
interactive use, this Standard describes a | anguage that is not so
restricted.

The organi zation of the Standard is outlined in Appendix 1. The

met hod of syntax specification used is explained in Appendi x 2.
2. REFERENCES

ECMA-6 : 7-Bit Input/Qutput Coded Character Set, 4th Edition

ECVA-53 : Representation of Source Prograns

3. DEFI NI TI ONS

For the purposes of this Standard, the follow ng terns have the
meani ngs i ndi cat ed.

3.1 BASIC

A termapplied as a name to nenbers of a special class of |an-
guages whi ch possess simlar syntaxes and semanti c neani ngs;
acronym for Beginner's All-purpose Synbolic Instruction Code.

3.2 Batch-npde

The processing of prograns in an environnent where no provision
is made for user interaction.

3.3 End-of -line

The character(s) or indicator which identifies the term nation
of a line. Lines of three kinds may be identified in M ninal
BASI C. programlines, print lines and input reply |lines. End-
of-line may vary between the three cases and may al so vary
dependi ng upon context. Thus, for exanple, an end of input
line may vary on a given system depending on the term na

bei ng used in interactive or batch node.

Typi cal exanples of end-of-line are carriage-return, carriage-
return line-feed, and end of record (such as end of card).

3.4 Error

A flaw in the syntax of a program which causes the program
to be incorrect.

3.5 Exception

A circunstance arising in the course of executing a program
which results fromfaulty data or conputations or from exceed-
I ng sone resource constraint. Were indicated certain excep-
tions (non-fatal exceptions) may be handl ed by the specified
procedures; if no procedure is given (fatal exceptions) or if
restrictions inposed by the hardware or operating environnent
make it inpossible to follow the given procedure, then the ex-
ception shall be handled by termnating the program

3.6 ldentifier
A character string used to nane a variable or a function.

3.7 Interactive node

The processing of prograns in an environnment which permts
the user to respond directly to the actions of individua
prograns and to control the commencenent and term nation of
t hese prograns.

3.8 Keyword

A character string, usually with the spelling of a comonly
used or mmenoni ¢ word, which provides a distinctive
identification of a statenent or a conponent of a statenent
of a programm ng | anguage.

The keywords in Mnimal BASIC are: BASE, DATA, DEF, DIM END
FOR, GO, GOsUB, GOTO | F, INPUT, LET, NEXT, ON, OPTION

PRI NT, RANDOM ZE, READ, REM RESTORE, RETURN, STEP, STOP,
SUB, THEN and TO

3.9 Line

A single transm ssion of characters which termnates with
an end-of -1ine.

3. 10 Nesting

A set of statenents is nested within another set of
st at enent s when:

-3-

— the nested set is physically contiguous , and
— the nesting set (divided by the nested set) is non-null.

3.11 Print zone

A contiguous set of character positions in a printed output
[ine which may contain an evaluated print statenment elenent.

3. 12 Roundi ng

The process by which the representation of a value with | ower
precision is generated froma representation of higher precision
taking into account the value of that portion of the origina
nunber which is to be omtted.

3.13 Significant digits

The contiguous sequence of digits between the high-order non-
zero digit and the | ow order non-zero digit, wthout regard
for the location of the radix point. Comonly, in a normalized
floating point internal representation, only the significant
digits of a representation are maintained in the significance.

NOTE: The Standard requires that the ability of a conforming
implementation to accept numeric representations be
measured in terms of significant digits rather than the
actual number of digits (that is including leading or
trailing zeroes) in the representation.

3.14 Truncation

The process by which the representation of a value with | ower
precision is generated froma representation of higher preci-
sion by nerely deleting the unwanted | ow order digits of the
original representation

4. CHARACTERS AND STRI NGS

4.1 Ceneral Description

The character set for BASIC is contained in the ECVA 7-bit
coded character set. Strings are sequences of characters and are
used in BASIC progranms as comments (see 19), as string constants
(see 6), or as data (see 15).

4.2 Syntax
1. letter = ABICODEFGHI/IKLMNOP QR ST/
UVIWX Yl Z
2. digit 0/ 1/2/3/4/5/6/7/8/9

3. string-character qguot ati on-mark / quoted-string-character
4. quoted-string- excl amati on-mark / nunber-sign / dollar-
char act er sign / percent-sign / anpersand /
apostrophe / left-parenthesis / right-
parenthesis / asterisk / comma / solidus /
colon / sem -colon / |less-than-sign /
equal s-sign / greater-than-sign /
question-mark / circunflex-accent /
underline / unquoted-string character
5. unquoted-string- = space / plain-string-character
char act er

6. plain-string- plus-sign / mnus-sign / full-stop /
char act er digit / letter

remar k-string string-character*

quot ed-string qguot ati on- mar k quot ed-string-character*
guot ati on- mar k

pl ai n-string-character / plain-
string-character unquoted-
string-character* plain-string-
character

© N

9. unquoted-string

4.3 Exampl es
ANY CHARACTERS AT ALL (?!*!!) CAN BE USED IN A "REVMARK".
" SPACES AND COMVAS CAN OCCUR | N QUOTED STRI NGS. "
COMVAS CANNOT OCCUR | N UNQUOTED STRI NGS

4.4 Semantics

The letters shall be the set of upper-case Roman letters con-
tained in the ECMA 7-bit coded character set in positions 4/1 to

5/ 10.

The digits shall be the set of arabic digits contained in the ECVA
7-bit coded character set in positions 3/0 to 3/9.

The remai ning string-characters shall correspond to the remaining
graphic characters in position 2/0 to 2/15, 3/10 to 3/15 and in
positions 5/14, 5/15 of the ECMA 7-bit coded character set.

The names of characters are specified in Table 1.

The coding of characters is specified in Table 2; however, this coding
appl i es only when prograns and/or input/output data are exchanged by
means of coded nedi a.

4.5 Exceptions
None.

4.6 Remar ks

Ot her characters fromthe ECMA 7-bit coded character set (in-
cluding control characters) may be accepted by an inplenmentation
and may have a neaning to some other processor (such as an editor)
but have no prescribed meaning within this Standard. Prograns
contai ning characters other than the string-characters descri bed
above are not standard-conform ng prograns.

The several kinds of characters and strings described by the
syntax correspond to the various uses of strings in a BASIC
program Remark-strings may be used in remark-statenments (see
19). Quoted-strings may be used as string-constants (see 6).
Unquot ed-strings may be used in addition to quoted-strings as
data el enents (see 17) w thout being enclosed in quotation marks;
unquot ed-strings cannot contain |leading or trailing spaces.

5. PROGRAMS
5.1 General Description

BASICis a line-oriented | anguage. A BASIC programis a sequence
of lines, the [ast of which shall be an end-line and each of

whi ch contains a keyword. Each line shall contain a unique |ine-
nurmber whi ch serves as a | abel for the statement contained in
that |ine.

5.2 Synt ax
1. program bl ock = bl ock* end-line block = (line/for-block)*
2. line = li ne-nunber statenent end-of-1ine
3. line-nunber =digit digit? digit? digit?
4. end-of-1line = [i npl enent at i on- def i ned]
5. end-line = |i ne-nunber end-statenent end-of-I|ine
6. end-stat enent = END
7. statenent = data-statenent / def-statenent /
di mension -statenment / gosub-statenent /
goto-statenent / if-then-statenent /
I nput-statenent / let-statenent / on-
goto-statement / option-statenent /
print-statement / random ze-statenent /
read-statenment / remark-statenent /
restore-statenent / return-statenment /
st op- st at ement
5.3 Exanpl es
999 END

5.4 Semantics

A BASI C program shall be conposed of a sequence of |ines ordered
by |ine-nunbers, the |ast of which contains an end-statenent.
Program | i nes shall be executed in sequential order, starting with
the first line, until

— sonme other action is dictated by a control statenment, or

— an exception condition occurs, which results in a term nation
of the program or

— a stop-statenment or end-statenment is executed.

Speci al conventions shall be observed regarding spaces. Wth the
foll om ng exceptions, spaces may occur anywhere in a BASIC
program wi t hout affecting the execution of that program and may
be used to i nprove the appearance and readability of the

progr am

Spaces shall not appear:

— at the beginning of a line

— within keywords

— within numeric constants

— within |ine nunbers

— within function or variable nanes

— within two-character relation synbol s

Al'l keywords in a program shall be preceded by at |east one
space and, if not at the end of a line, shall be followed by
at | east one space.

Each line shall begin with a line-nunber. The val ues of the

i ntegers represented by the |line-nunbers shall be positive
nonzero; |eading zeroes shall have no effect. Statenents shal
occur in ascending |ine-nunber order.

The manner in which the end of a statenent line is detected is
determined by the inplenentation; e.g. the end-of-line may be a
carriage-return character, a carriage-return character foll owed by
a line-feed character, or the end of a physical record.

Lines in a standard-conform ng programmy contain up to 72
characters; the end-of-line indicator is not included within
this 72 character limt.

The end-statenment serves both to mark the physical end of the
mai n body of a programand to term nate the execution of the
pr ogram when encount er ed.

5.5 Exceptions
None.
5.6 Remarks

Local editing facilities may allow for the entry of statenent
lines in any order and also allow for duplicate |ine-nunbers
and lines containing only a line-nunber. Such editing facili-
ties usually sort the programinto the proper order and in the
case of duplicate |line-nunbers, the last line entered with
that line-nunber is retained. In many inplenentations, a line
containing only a line-nunmber (without trailing spaces) is
usual ly deleted fromthe program

6. CONSTANTS
6.1 General Description

Constants can denote both scalar nunmeric values and string
val ues.

A numeric-constant is a decimal representation in positiona
notation of a nunmber. There are four general syntactic forns
of (optionally signed) nuneric constants;

— inplicit point representation sd...d

— explicit point unscal ed representation sd..drd..d

— explicit point scaled representation sd..drd..dEsd..d
— implicit point scaled representation sd. . dEsd. . d

wher e:

dis a decinmal digit,

ris afull-stop

s is an optional sign, and
Eis the explicit character E

A string-constant is a character string enclosed in quotation
marks (see 4).

6.2 Synt ax
1. nuneric-constant = sign? nunmeric-rep
2. sign = plus-sign / m nus-sign
3. nuneric-rep = significand exrad?
4. significand = integer full-stop? / integer? fraction
5. integer =digit digit*
6. fraction = full-stop digit digit*
7. exrad = E sign? integer
8. string-constant = quoted-string
6.3 Exanpl es
1 500 - 21. . 255 1E10
5E-1 .4E+1
" XyzZ" "X - 3B2" "1E10"

6.4 Semantics

The value of a nuneric-constant is the nunber represented by
that constant. "E" stands for "times ten to the power"”; if no
sign follows the synbol "E', then a plus sign is understood.
Spaces shall not occur in numeric-constants.

A program may contain numeric representations which have an

arbitrary nunber of digits, though inplenentations may round the

val ues of such representations to an inplenentation-defined

preci sion of not |ess than six significant decinmal digits. Nunmeric
constants can al so have an arbitrary nunber of digits in the ex-

rad, though nonzero constants whose magnitude is outside an im
pl enent ati on-defined range will be treated as exceptions. The
i npl ement ati on-defi ned range shall be at |east 1E-38 to 1E+38
Const ants whose magni tudes are | ess than machi ne infinitesimal
shall be replaced by zero, while constants whose nmagnitudes are
| arger than machine infinity shall be diagnosed as causing an
overfl ow

A string-constant has as its value the string of all characters
bet ween the quotation marks; spaces shall not be ignored. The
| ength of a string-constant, i.e. the nunber of characters con-

tai ned between the quotation-marks, is limted only by the length

of a line.
6.5 Exceptions

The eval uation of a nuneric constant causes an overfl ow (non-
fatal, the recommended recovery procedure is to supply machine
infinity with the appropriate sign and conti nue).

6.6 Remar ks

Since this Standard does not require that strings with nore than
18 characters be assignable to string variables (see 7),
conform ng prograns can use string constants with nore than 18
characters only as elenents in a print-list.

7.

-8-

It is reconmended that inplenentations report constants whose
magni t udes are | ess than nmachine infinitesiml as underfl ows
and conti nue.

VARI ABLES

7.1 General Description

Variables in BASIC are associated with either nuneric or
string values and, in the case of nuneric variables, may be
either sinple variables or references to elenments of one or
two di nensional arrays; such references are called subscript-
ed vari abl es.

Sinple nuneric variables shall be nanmed by a letter followed
by an optional digit.

Subscripted nuneric variables shall be nanmed by a letter fol-
| owed by one or two nuneric expressions enclosed within pa-
rent heses.

String variables shall be named by a letter followed by a
dol | ar - si gn.

Explicit declarations of variable types are not required; a
dol lar-sign serves to distinguish string fromnuneric

vari abl es, and the presence of a subscript distinguishes a
subscripted variable froma sinple one.

7.2 Syntax
1. variable = nuneric-variable / string-variable
2. nuneric-variable = sinpl e-nuneric-variable /
nuneric-array-el ement
3. sinple-nuneric- = letter digit?
vari abl e
4. numeric-array-elenent = nuneric-array-nanme subscri pt
5. nuneric-array-nanme = letter
6. subscri pt = | eft-parenthesi s nuneric-expression
(comra nuneric-expression)? right-
par ent hesi s
7. string-variable = letter dollar-sign
7.3 Exanpl es
X A5 V(3) W X, X+Y/ 2)
S$ Cs

7.4 Semantics

At any instant in the execution of a program a nuneric-
variable is associated with a single nuneric value and a
string-variable is associated with a single string val ue.
The val ue associated with a variable nay be changed by the
execution of statements in the program

-9-

The length of the character string associated with a string-
vari able can vary during the execution of a programfrom a

| ength of zero characters (signifying the null or enpty string)
to 18 characters.

Si npl e-nuneric-vari ables and string-variables are declared im
plicitly through their appearance in a program

A subscripted variable refers to the element in the one or two
di mensi onal array selected by the value(s) of the subscript(s).
The val ue of each subscript is rounded to the nearest integer.
Unl ess explicitly declared in a dinmension statenment, subscript-
ed variables are inplicitly declared by their first appearance
in a program In this case the range of each subscript is from
zero to ten inclusive, unless the presence of an option-state-
ment indicates that the range is fromone to ten inclusive.
Subscri pt expressions shall have values within the appropriate
range (see 18).

The sane letter shall not be the name of both a sinple variable and
an array, nor the nanme of both a one-di nensional and a two-
di nensi onal array.

There is no relationship between a nuneric-variable and a string-
vari abl e whose names agree except for the doll ar-sign.

At the initiation of execution the values associated with all
vari abl es shall be inplenentation-defined.

7.5 Exceptions

7.

8.

6

A subscript is not in the range of the explicit or inplicit
di mensi oni ng bounds (fatal).

Remar ks

Since initialization of variables is not specified, and hence may
vary frominplenmentation to inplenentation, prograns that are
intended to be transportable should explicitly assign a value to
each variabl e before any expression involving that variable is
eval uat ed.

There are many commonly used alternatives for associating im

pl ementation-defined initial values with variables; it is re-
commended that all variables are recogni zably undefined in the sense
that an exception will result fromany attenpt to access the val ue
of any variable before that variable is explicitly assigned a val ue.

EXPRESSI ONS

8.1 General Description

Expressi ons shall be either nunmeric-expressions or string-
expr essi ons.

Nuneri c- expressi ons may be constructed from vari abl es, constants,
and function references using the operations of addition, sub-
traction, nmultiplication, division and involution

-10-

String-expressions are conposed of either a string variable or a
string-constant.

8.2 Yynt ax
1. expression = numeri c-expression / string-expression
2. nuneric-expression = sign? term(sign term*
3. term = factor (multiplier factor)?*
4. factor = primary (circunflex-accent primary)*
5. multiplier = asterisk / solidus
6. primry = nuneric-variable / nuneric-rep /
nuneric-function-ref / |eft-parenthesis
numeri c- expressi on right-parenthesis
7. numeric-function- = nuneri c-functi on- nane
r ef argunent-1ist?
8. nuneric-function- = nuneri c-defi ned-function /
name nuneri c- suppl i ed-function
9. argunent-|ist = | eft-parenthesis argunent right-parenthesis
10. argunent = nuneri c-expressi on

11. string-expression string-variable / string-constant

8. 3 Exanpl es
3*X — Y2 A(1) +A(2) +A(3) 27 - X)
-X'Y SQR(X 2+Y'2)

8.4 Semantics

The formati on and eval uati on of nuneric-expressions follows the
normal al gebraic rules. The synbols circunflex-accent, asteri sk,
sol i dus, plus-sign and m nus-sign represent the operations of

i nvolution, nultiplication, division, addition and subtracti on,
respectively. Unl ess parentheses dictate otherw se, involutions
are perfornmed first, then multiplications and divisions, and
finally additions and subtractions. In the absence of parenthe-
ses, operations of the sane precedence are associated to the
left.

A-B-Cis interpreted as (A-B)-C, AB"C as (A"B)"C, A/B/C as
(A/B)/C and —-A"B as - (A"B).

If an underfl ow occurs in the evaluation of a numeric expression
t hen the val ue generated by the operation which resulted in the
underfl ow shall be replaced by zero.

0" is defined to be 1, as in ordinary mathematical usage.

When the order of evaluation of an expression is not constrained
by the use of parentheses, and if the mathematical use of opera-
tors is associative, conmutative, or both, then full use of these
properties may be nmade in order to revise the order of evaluation
of the expression.

In a function reference, the nunber of argunents supplied shall
be equal to the nunmber of paranmeters required by the definition
of the function.

-11 -

A function reference is a notation for the invocation of a pre-
defined algorithm into which the argunent value, if any, is
substituted for the paraneter (see 9 and 10) which is used in the
function definition. Al functions referenced in an expression
shall either be inplenmentation-supplied or be defined in a def-
statenent. The result of the evaluation of the function, achieved
by the execution of the defining algorithm is a scalar nuneric
val ue which replaces the function reference in the expression.

8.5 Exceptions

—Eval uation of an expression results in division by zero (nonfatal,
the recomended recovery procedure is to supply machine infinity
with the sign of the nunmerator and continue).

—Eval uation of an expression results in an overflow (nonfatal, the
recommended recovery procedure is to supply nmachine infinity with
the al gebraically correct sign and continue).

—Eval uation of the operation of involution results in a negative
nunber being raised to a non-integral power (fatal).

—Eval uation of the operation of involution results in zero being
raised to a negative value (nonfatal, the reconmended recovery
procedure is to supply positive machine infinity and continue).

8.6 Remarks

The accuracy with which the evaluation of an expression takes
place will vary frominplenmentation to inplenentation. Wile no
m ni mum accuracy is specified for the evaluation of nuneric-
expressions, it is recommended that inplenentations maintain at
| east six significant decimal digits of precision.

The nethod of evaluation of the operation of involution may
depend upon whether or not the exponent is an integer. If it
is, then the indicated nunber of nultiplications my be per-
formed; if it is not, then the expression may be eval uated
using the LOG and EXP functions (see 9).

It is recormmended that inplenentations report underflow as an
excepti on and conti nue.

9. IMPLEMENTATION SUPPLIED FUNCTIONS

9.1 General Description

Predefined algorithnms are supplied by the inplenentation for
t he eval uati on of commonly used nuneric functions.

9.2 Syntax

1. nuneric-supplied-function = ABS/ ATN/ COS / EXP / INT /
LOG/ RND/ SGN/ SIN/ SQR/ TAN

9. 3 Exanpl es
None.

-12 -

9.4 Semantics

The values of the inplenentation-supplied functions, as well as
t he nunber of argunents required for each function, are described
below. In all cases, X stands for a nuneric expression.

Functi on Functi on val ue

ABS(X) The absol ute val ue of X

ATN(X) The arctangent of X in radians, i.e. the angle
whose tangent is X The range of the function
is

—(pil2) < ATN(X) < (pi/2)

where pi is the ratio of the circunference of
acircletoits dianeter.

COs (X) The cosine of X, where X is in radians.

EXP(X) The exponential of X, i.e. the value of the
base of natural logarithnms (e = 2,71828...)
raised to the power X; if EXP(X) is |less than
machine infinitesimal, then its val ue shal
be replaced by zero.

I NT(X) The | argest integer not greater than X, e.g.
INT(1.3) =1 and INT(-1.3) = -2.

LOE X) The natural |ogarithmof X, X nust be greater
t han zero.

RND The next pseudo-random nunber in an inplenmen-

tation-supplied sequence of pseudo-random num
bers uniformy distributed in the range 0 <=
RND < 1 (see al so 20).

SGN(X) The sign of XX -1if X<0, 0Oif X=0 and
+1if X>0.

SIN(X) The sine of X, where X is in radians.

SQR(X) The nonnegative square root of X; X nust be
nonnegati ve.

TAN (X) The tangent of X, where X is in radians.

9.5 Exceptions

— The val ue of the argunent of the LOG function is zero or ne-
gative (fatal).

— The val ue of the argunent of the SQR function is negative
(fatal).

— The magnitude of the value of the exponential or tangent
function is larger than machine infinity (nonfatal, the re-
commended recovery procedure is to supply machine infinity
with the appropriate sign and continue).

-13-

9.6 Renmarks

The RND function in the absence of a random ze-statenment (see
20) will generate the sane sequence of pseudo-random nunbers
each tinme a programis run. This convention is chosen so that
prograns enpl oyi ng pseudo-random nunbers can be executed severa
times with the sanme result.

It is reconmended that, if the value of the exponential function
is less than machine infinitesimal, inplenentations report this as
an underfl ow and conti nue.

10. USER DEFI NED FUNCTI ONS
10.1 Ceneral Description
In addition to the inplenentation supplied functions provided

for the conveni ence of the programmer (see 9), BASIC allows the
programmrer to define new functions within a program

The general form of statenents for defining functions is
DEF FNx = expression

or DEF FNx (paraneter) = expression
where x is a single letter and a paraneter is a sinple nuneric-
vari abl e.

10. 2 Synt ax

1. def-statenent DEF nuneri c-defi ned-function

paraneter-|ist? equal s-sign

nuneri c- expressi on

2. nuneric-defined-
function

3. paraneter-|ist

FN letter

| ef t - parent hesi s paraneter
ri ght-parenthesis

si npl e-nuneric-vari abl e

4. paraneter
10. 3 Exanpl es

DEF FNF(X)
DEF FNA(X)

10.4 Semantics

XM -1 DEF FNP = 3. 14159
A*X + B

A function definition specifies the nmeans of evaluating the
function in ternms of the value of an expression involving the
paranmeter appearing in the paraneter-|list and possibly other

vari abl es or constants. Wen the function is referenced, i.e.
when an expression involving the function is evaluated, then the
expression in the argunent list for the function reference, if
any, is evaluated and its value is assigned to the paraneter in
the paraneter-list for the function definition (the nunber of
argunents shall correspond exactly to the nunber of paraneters).
The expression in the function definition is then eval uated, and
this value is assigned as the value of the function.

-14-

The paraneter appearing in the paranmeter-list of a function

definition is local to that definition, i.e. it is distinct

fromany variable with the sane name outside of the function
definition. Variables which do not appear in the paraneter-

list are the variables of the sanme nane outside the function
definition.

Afunction definition shall occur in a |lower nunbered |ine than
that of the first reference to the function. The expression in
a def-statement is not evaluated unl ess the defined function is
ref erenced.

If the execution of a programreaches a |line containing a def-
statenent, then it shall proceed to the next line with no other
ef fect.

Afunction definition may refer to other defined functions, but
not to the function being defined. A function shall be defined
at nost once in a program

10. 5 Exceptions

None.

11. LET STATEMENT
11.1 General Description

11.

11.

11.

11.

Alet-statenent provides for the assignnment of the val ue of
an expression to a variable. The general syntactic form of
the let-statenment shall be

LET vari abl e = expression
Synt ax

1. let-statenent = nuneric-let-statenment /

string-| et-statenent

LET nuneri c-vari abl e equal s-si gn
numeri c- expr essi on

LET string-vari abl e equal s-sign
string-expression

2. nuneric-|et-statenent

3. string-Iet-statenent

Exanpl es

LET P= 3.14159
LET A(X,3) = SIN(X)*Y + 1

LET A$ = " ABC"
LETA$ = B$
Semanti cs

The expression is evaluated (see 8) and its value is assigned
to the variable to the left of the equals sign

Excepti ons

A string datum contains too many characters (fatal).

-15-

12. CONTROL STATEMENTS

12.1 Ceneral Description

Control statements allow for the interruption of the nornal
sequence of execution of statenents by causing execution to
continue at a specified line, rather than at the one with the
next hi gher |ine nunber.

The got o- st at enment
GO TO | i ne- nunber
all ows for an unconditional transfer.
The i f-then-statenment
| F expl rel exp2 THEN | i ne-nunber

where "expl" and' exp2" are expressions and "rel" is a relationa
operator, allows for a conditional transfer.

The gosub and return statenents

GO SUB | i ne- nunmber
RETURN

all ow for subroutine calls.

The on-got o- st at ement
ON expression GO TO line-nunber, ..., |ine-nunber

allows control to be transferred to a selected |ine.
The stop-statenment
STOP
Alows for programtermnation
12. 2 Synt ax

1. goto-statement
2. if-then-statenent

GO space* TO |i ne-nunber

| F rel ati onal - expressi on THEN

[i ne- nunber

3. rel ational -expression = nuneric-expression relation
numeri c- expression /string-
expression equality-relation
string-expression
equality-relation / less-than-sign /
greater-than-sign / not-less / not-
greater

equal s-sign / not-equal s
greater-than-sign equal s-sign

| ess-than-sign equal s-sign

| ess-than-sign greater-than-sign
GO space* SUB |i ne-nunber

RETURN

ON numeri c-expressi on GO space*
TO | i ne- nunber (comma |i ne-nunber)*

4. relation

equality-relation
not - | ess

not - greater

not - equal s

. gosub- st at enent
10. ret urn- st at enent
11. on- got o- st at enent

©CONo O

12.

12.

3

-16 -

12. stop-statenent = STCOP

Exanpl es

GO TO 999 IF X > Y+83 then 200

| F A$ <> B$ THEN 550 ON L+1 GO TO 300, 400, 500

Semanti cs

A goto-statenent indicates that execution of the programis to
be continued at the specified |ine-nunber

If the value of the relational-expression in an if-then-
statement is true, then execution of the program shal
continue fromthe specified line-number; if the val ue of
the rel ati onal -expression is false, then execution shal
be continued in sequence i.e. with the statement on the
line follow ng that containing the if-then-statement.

The relation "less than or equal to" shall be denoted by <=.
Simlarly, "greater than or equal to" shall be denoted by >=,
while "not equal to" shall be denoted by <>.

The relation of equality holds between two strings if and
only if the two strings have the sanme | ength and contain
i dentical sequences of characters.

The execution of the gosub-statenment and the return-
statement can be described in terms of a stack of |ine-
numbers (but may be inmplemented in some other fashion).
Prior to execution of the first gosub-statenment by the
program this stack is enpty. Each time a gosub-statenent
is executed, the |line-nunber of the gosub-statenent is

pl aced on top of the stack and execution of the programis
continued at the line specified in the gosub-statenent.
Each time a return-statenent is executed, the |ine-nunber
on top of the stack is removed fromthe stack and execution
of the programis continued at the line follow ng the one
with that |ine-number.

It is not necessary that equal numbers of gosub-statements
and return-statements be executed before term nation of the
program

The expression in an on-goto-statement shall be eval uated
and rounded to obtain an integer, whose value is then used
to select a line-nunber fromthe list followi ng the GOTO
(the line-nunbers in the list are indexed fromleft to
right, starting with 1). Execution of the program shall
continue at the statement with the selected |ine-nunber.

All line-numbers in control-statenents shall refer to lines in
the program

The stop-statenent causes termnation of the program

12.5 Exceptions

— An attenmpt is made to execute a return-statenment without
havi ng executed a correspondi ng gosub-statement (fatal).

-17 -

- The integer obtained as the value of an expression in an
on-goto-statement is |less than one or greater than the
nunber of line-nunmbers in the list (fatal).

13. FOR AND NEXT STATEMENTS

13.1 Ceneral Description

The for-statenment and next-statenent provide for the construct-
ion of |oops. The general syntactic formof the for-statenent
and next-statenent is

FOR v = initial-value TOlimt STEP
i ncrement NEXT v

where "v" is a sinple nuneric variable and the "initial-val ue",
"limt" and "increnment" are nuneric expressions; the clause "STEP
increnent” is optional

13. 2 Synt ax
1. For-block = for-line for-body
2. for-body = bl ock next-line
3. for-line = |ine-nunmber for-statenent
end-of -1 i ne
4. next-line = |ine-number next-statenent

end-of -1 i ne

FOR control -vari abl e equal s-sign
initial-value TOlimt (STEP

i ncrement) ?

5. for-statenent

6. control-variable = sinpl e-nuneric-variabl e

7. initial-value = nuneri c-expression

8. limt = nuneri c-expression

9. increnent = numeri c-expression

10. next - st at ement = NEXT control -variabl e
13. 3 Exanpl es

FOR1 =1 TO 10 FORI1 = A TO B STEP -1
NEXT | NEXT |

13.4 Semantics

The for-statenment and the next-statenent are defined in con-
junction with each other. The physical sequence of statenents
beginning with a for-statenent and continuing up to and incl uding
the first next-statenent with the sane control variable is terned
a "for-block". For-blocks can be physically nested, i.e. one can
contain another, but they shall not be interleaved, i.e. a for-

bl ock which contains a for-statenment or a next-statenent shal
contain the entire for-block begun or ended by that statenent.

Furt hernore, physically nested for-blocks shall not use the
sanme control variable.

13.

13.

5

6

-18 -

In the absence of a STEP clause in a for-statenent, the incre-
nment is assuned to be +1

The action of the for-statenent and the next-statenent is de-
fined in ternms of other statenents, as follows:

FOR Vv = initial-value TOlimt STEP increnent

(bl ock)
NEXT v
i s equival ent to:
LET ownl = lint
LET own2 = increnent
LET v = initial-value
Linel IF (v-ownl) * SGN (own2) > 0 THEN | i ne2
(bl ock)
LET v = v + own?2
GOTO | i nel

| ine2 REM continued in sequence

Here v is any sinple-nuneric-variable, owl and own2 are va-

ri abl es associated with the particular for-block and not ac-
cessible to the programrer, and linel and |line2 are |line-nunbers
associated with the particular for-block and not accessible to
the programmer. The vari ables ownl and own2 are distinct from
simlar variables associated with other for-blocks. A program
shall not transfer control into a for-body by any statenent

ot her than a return statenment (see 12).

Excepti ons
None.
Remar ks

VWere arithnmetic is approximate (as with decimal fractions in a
bi nary machine), the loop will be executed within the limts of
machi ne arithnmetic. No presunptions about approxi mate achi evenent
of the end test are nade. It is noted that in nost ordinary
situations where nmachine arithnmetic is truncated (rather than
rounded), such constructions as

FOR X =0 TO 1 STEP 0.1

will work as the user expects, even though 0.1 is not represent-
able exactly in a binary machine. If this is indeed the case, then
t he construction

FOR X =1 TOO STEP -0.1
wi |l probably not work as expect ed.

As specified above, the value of the control-variable upon exit
froma for-block via its next-statenent is the first val ue not

used; if exit is via a control-statenent, the control -vari abl e
retains the value it has when the control-statenent is

execut ed.

The vari abl es "ownl" and "own2" associated with a for-block are
assi gned val ues only upon entry to the for-block through its for-
st at enent .

-19-

14. PRI NT STATEMENT
14.1 General Description

The print-statement is designed for generation of tabular output
in a consistent format.

The general syntactic formof the print-statenment is

PRINT itemp itemp pitem
where each itemis an expression, a tab-call, or null, and
each punctuation mark p is either a comma or a sem -col on.

14.2 Synt ax

1. print-statenment
2. print-1list

PRI NT print-list?

(print-iten? print-separator)*
print-item?

expression / tab-call

TAB | eft-parenthesis nunmeric-expres-
sion right-parenthesis

comma / sem col on

3. print-item
4. tab-call

5. print-separator
14. 3 Exanpl es

PRI NT X PRI NT "X EQUALS", 10
PRINT X; (Y+Z)/2 PRINT X, Y
PRI NT PRINT ,,, X

PRI NT TAB(10); A%$; "IS DONE."
14. 4 Semantics

The execution of a print-statement generates a string of
characters for transm ssion to an external device. This
string of characters is determ ned by the successive
eval uation of each print-item and print-separator in the
print-1list.

Numeri c- expressions shall be evaluated to produce a string
of characters consisting of a |eading space if the nunber
is positive or a leading mnus-sign if the number s
negative followed by the deciml representation of the
absolute value of the nunmber and a trailing space. The
possi ble formats for the deciml representation of a nunber
are the sanme as those described for nunmeric-constants in 6
and are used as follows.

Each i npl ementation shall define two quantities, a
significance-width d to control the nunber of significant
decimal digits printed in numeric representati ons, and an
exrad-width e to control the nunmber of digits printed in the
exrad conponent of a nuneric representation. The value of d
shall be at |east six and the value of e shall be at | east

t wo.

Each nunber that can be represented exactly as an integer with d
or fewer decimal digits is output using the inplicit point
unscal ed representation

Al'l other nunbers shall be output using either explicit
poi nt unscal ed notation or explicit point scaled notation.
Number s which can be represented with d or fewer digits in
t he unscaled format no | ess accurately than they can be
represented in the scaled format shall be output using the
unscal ed format. For exanple, if d = 6, then 10/(-6) is
out put as .000001 and

-20-
10"(-7) is output as 1.E-7.

Nunbers represented in the explicit point unscal ed notation
shall be output with up to d significant decimal digits and a
full-stop; trailing zeroes in the fractional part may be
omtted. A nunber wth magnitude |l ess than 1 shall be
represented with no digits to the left of the full-stop. This
formrequires up to d+3 characters counting the sign, the full-
stop and the trailing space.

Nunbers represented in the explicit point scaled notation
shal |l be output in the format

significand E sign integer

where the value x of the significand is in the range 1 <= x <
10 and is to be represented with exactly d digits of precision,
and where the exrad conponent has one to e digits. Trailing
zeroes may be omitted in the fractional part of the significand
and | eading zeroes nay be omtted fromthe exrad. This formre-
quires up to d+e+5 characters counting the two signs, the full-
stop, the "E'" and a trailing space.

String-expressions shall be evaluated to generate a string
of characters.

The eval uation of the sem col on separator shall generate
the null string, i.e. a string of zero | ength.

The evaluation of a tab-call or a comma separator depends upon
the string of characters already generated by the current or
previous print-statenents. The "current line" is the (possibly
enpty) string of characters generated since the |ast end-of-
line was generated. The "margin" is the nunber of characters,
excluding the end-of-1ine character, that can be output on one
line and is defined by the inplenentation. The "col umar posi -
tion" of the current line is the print position that will be
occupi ed by the next character output to that line; print
positions are nunbered consecutively fromthe left, starting
Wi th position one.

Each print-line is divided into a fixed nunber of print zones,
where the nunber of zones and the length of each zone is im
pl enentation defined. Al print zones, except possibly the

| ast one on a line, shall have the sanme |length. This length
shal |l be at |east d+e+6 characters in order to acconodate the
printing of nunbers in explicit point scaled notation as
descri bed above and to allow the comma separator to nove the
printing nechanismto the next zone as described bel ow.

The purpose of the tab-call is to set the columar position of
the current line to the specified value prior to printing the
next print-item More precisely, the argunent of the tab-cal
is evaluated and rounded to the nearest integer n. If nis

| ess than one, an exception occurs. If nis greater than the
margin m then n is reduced by an integral nmultiple of mso
that it isintherange 1 <=n<=m i.e. nis set equal to

-21-

n- m* INT ((n-1)/m.

If the columar position of the current line is less than or
equal to n, then spaces are generated, if necessary, to set the
columar position to n; if the columar position of the current
line is greater than n, then an end-of-line is generated foll ow
ed by enough spaces to set the colummar position of the new cur-
rent line to n.

The eval uati on of the comma-separator generates one or nore
spaces to set the columar position to the beginning of the
next print zone, unless the current print zone is the |ast on
the line, in which case an end-of-line is generated.

If the print list does not end in a print-separator, then an
end-of-line is generated and added to the characters generated
by the evaluation of the print-1list.

If the evaluation of any print-itemin a print-list would cause
the length of a nonenpty line to exceed the margin, then an
end-of-line is generated prior to the characters generated by
that print-item Subsequently, if the evaluation of a print-
item generates a string whose length is greater than the mar-
gin, then end-of-lines are inserted after every mcharacters in
the string, where mis the margin val ue.

14.5 Exceptions

14. 6

15.

The eval uation of a tab-call argunment generates a val ue | ess
than one (nonfatal: the reconmended recovery procedure is to
supply one and conti nue).

Renmar ks

The comma-separator allows the progranmer to tabulate the print-
ing mechanismto fixed tab settings at the end of each print
zone.

A conpletely enpty print-list will generate an end-of-Iine,
t hereby conpleting the current line of output. If this line
contai ned no characters, then a blank line results.

A print line on a typical termnal mght be divided into five
print zones of fifteen print positions each.

INPUT STATEMENT

15.1 CGeneral Description

| nput -statenments provide for user interaction with a running
program by allow ng variables to be assigned values that are
supplied by a user. The input-statenent enables the entry of
m xed string and nuneric data, with data itens being separat-
ed by conmas. The general syntactic form of the input-state-
ment is

INPUT Vvariable, ..., variable

-22-

15. 2 Synt ax

1. input-statenent = I NPUT vari abl e-Ii st

2. variable-list = variable (comma vari abl e) *

3. input-pronpt = [i npl enent ati on-defi ned]

4. input-reply = input-list end-of-1line

5. input-1list = padded-dat um (comm padded- dat um *

6. padded-datum = space* datum space*

7. datum = quoted-string / unquoted-string
15. 3 Exanpl es

I NPUT X I NPUT X, AS$, Y(2) INPUT A, B, C

3.14159 2,SMTH, -3 25,0,-15

15.4 Semantics

An input-statenment causes the variables in the variable-list to
be assigned, in order, values fromthe input-reply. In the
interactive node, the user of the programis infornmed of the
need to supply data by the output of an input-pronpt. In batch
node, the input-reply is requested fromthe external source by
an i npl enment ati on-defined nmeans. Execution of the programis
suspended until a valid input-reply has been supplied.

The type of each datumin the input-reply shall correspond to
the type of the variable to which it is to be assigned; i.e.,
nuneric-constants shall be supplied as input for nuneric-

vari abl es, and either quoted-strings or unquoted-strings shal
be supplied as input for string-variables. If the response to
input for a string-variable is an unquoted-string, |eading and
trailing spaces shall be ignored (see 4).

If the evaluation of a nunmeric datum causes an underflow, then
its value shall be replaced by zero.

Subscript expressions in the variable-list are evaluated after
val ues have been assigned to the variables preceding them(i.e.
to the left of them in the variable-list.

No assignment of values in the input-reply shall take place unti
the input-reply has been validated with respect to the type of
each datum the nunber of input itens, and the all owabl e range
for each datum

15.5 Exceptions

— The type of datum does not match the type of the variable to
which it is to be assigned (nonfatal, the recommended recov-
ery procedure is to request that the input-reply be re-sup-
plied).

— There is insufficient data in the input-list (nonfatal, the
recommended recovery procedure is to request that the input-
reply be resupplied).

— There is too nuch data in the input-list (nonfatal, the re-
commended recovery procedure is to request that the input-
reply be resupplied).

-23-

— The eval uation of a numeric datum causes an overfl ow (non-
fatal, the recommended recovery procedure is to request that
the input-reply be resupplied).

— A string datum contains too many characters (nonfatal, the
recommended recovery procedure is to request that the input-
reply be resupplied).

15. 6 Remar ks

This Standard does not require an inplenmentation to perform any
editing of the input-reply, though such editing may be perforned
by the operating environnent.

It is reconmended that the input-Pronpt consists of a question-
mark foll owed by a single space.

This Standard does not require an inplenmentation to output the
i nput-reply.

It is recoomended that inplenmentations report an underflow as
an exception and allow the input-reply to be resupplied.

16. READ AND RESTORE STATEMENTS

16.1 General Description

The read-statenent provides for the assignnent of values to
vari ables froma sequence of data created from data-statenents
(see 17). The restore-statenent allows the data in the program
to be reread. The general syntactic fornms of the read and re-
store statenents are

READ variable, ..., variable
RESTORE

16. 2 Synt ax

1. read-statement
2. restore-statement

READ vari abl e-1i st
RESTORE

16. 3 Exanpl es
READ X, Y, Z READ X(1), A%, C
16. 4 Semanti cs

The read-statenment causes variables in the variable-list to
be assigned values, in order, fromthe sequence of data (see
17). A conceptual pointer is associated with the data
sequence. At the initiation of execution of a program this
poi nter points to the first datumin the data sequence. Each
time a read-statenment is executed, each variable in the

vari able-list in sequence is assigned the value of the datum
i ndi cated by the pointer and the pointer is advanced to point
beyond that datum

The restore-statenment resets the pointer for the data
sequence to the beginning of the sequence, so that the next
read- st atenment executed will read data from the begi nni ng of
t he sequence once again.

16. 5

16. 6

=24 -

The type of a datumin the data sequence shall correspond to the
type of the variable to which it is to be assigned; i.e.
nunmeric-vari abl es require unquoted-strings which are nuneric-
constants as data and string-variables require quoted-strings or
unquot ed-strings as data. An unquoted-string which is a valid
numeric representation nmay be assigned to either a string-
variabl e or a nuneric-variable by a read-statenent.

If the evaluation of a nuneric datum causes an underflow, then
its value shall be replaced by zero.

Subscri pt expressions in the variable-list are evaluated after
val ues have been assigned to the variables preceding them(i.e.
to the left of them in the list.

Excepti ons

— The variable-list in a read-statenent requires nore data than
are present in the remai nder of the data-sequence (fatal).

— An attenpt is nmade to assign a string datumto a nuneric
variable (fatal).

— The evaluation of a numeric datum causes an overflow (non-
fatal, the recomended recovery procedure is to supply ma-
chine infinity with the appropriate sign and conti nue).

— A string datum contains too many characters (fatal).
Remar ks

It is recoomended that inplenentations report an underflow as
exception and conti nue.

17. DATA STATEMENT

17.1

17. 2

17.3

17. 4

General Description

The data-statenent provides for the creation of a sequence of
representations for data elenents for use by the read-statenent.
The general syntactic formof the data-statenent is

DATA datum ..., datum

where each datumis either a nunmeric constant, a string-constant
or an unquoted string.

Synt ax

DATA dat a-1|i st
datum (comma dat um *

1. data-statenent
2. data-list

Exanpl es
DATA 3. 14159, PI, 5E-10, ","

Semanti cs

Data fromthe totality of data-statenments in the program are
collected into a single data sequence. The order in which data
appear textually in the totality of all data-statenents deter-
m nes the order of the data in the data sequence.

-25-

If the execution of a programreaches a |line containing a
data-statenent, then it shall proceed to the next line with
no ot her effect.

17.5 Exceptions
None.

18. ARRAY DECLARATI ONS
18.1 Ceneral Description

The di nension-statenment is used to reserve space for arrays.

Unl ess decl ared otherwi se, all array subscripts shall have a

| oner bound of zero and an upper bound of ten. Thus the default
space al l ocation reserves space for 11 el enents in one-di nmen-
sional arrays and 121 elenments in two-di nensional arrays. By use
of a di nension-statenent, the subscript(s) of an array may be
decl ared to have an upper bound other than ten. By use of an
option-statenent, the subscripts of all arrays may be declared to
have a | ower bound of one.

The general syntactic form of the di mension-
statement is DI M declaration, ..., declaration
wher e each declaration has the form

letter (integer)
or letter (integer , integer)

The general syntactic formof the option-statenent is
OPTI ON BASE n
where n is either 0 or 1.
18. 2 Synt ax
1. di nensi on- st at enent

DI M array decl aration

(comma array-declaration)*

nunmeri c-array-nane | eft-parenthesis
bounds ri ght - parent hesi s

I nteger (comma integer)?

OPTI ON BASE (0/1)

2. array-decl aration

3. bounds
4. option-statenent

18. 3 Exanpl es
DM A (6), B(10, 10)
18. 4 Semantics

Each array-declaration occurring in a dinmension-statenment de-
clares the array nanmed to be either one or two di nensional ac-
cording to whether one or two bounds are listed for the array.
In addition, the bounds specify the maxi mum val ues that sub-
script expressions for the array can have.

The declaration for an array, if present at all, shall occur in a
| ower nunbered |line than any reference to an el enent of that

18

19.
19

19.

19.

19.

19.

20.
20

20

20

-26-

array. Arrays that are not declared in any dinension-statenent
are declared inplicitly to be one or two di nensional according
to their use in the program and to have subscripts with a
maxi mum val ue of ten (see 7).

The option-statenent declares the m ninumvalue for all array
subscripts; if no option-statenent occurs in a program this
mnimmis zero. An option-statement, if present at all, nust

occur in a lower nunbered |line than any dinension-statenent or any

reference to an element of an array. If an option-statenent
specifies that the | ower bound for array subscripts is one, then
no di mension-statenment in the programmay specify an upper bound
of zero. A program may contain at nopst one option-statenent.

If the execution of a programreaches a |ine containing a di-
mensi on-statenment or an option-statenment, then it shall proceed
to the next line with no other effect.

An array can be explicitly dinmensioned only once.

.5 Exceptions

None.

REMARK STATEMENT

.1 General Description

4

The remark-statenment all ows program annotati on.

2 Synt ax

1. remark-statenent = REM remark-string

3 Exanpl es

REM FI NAL CHECK

Semanti cs

If the execution of a programreaches a line containing a
remark-statenment, then it shall proceed to the next Iine with
no ot her effect.

5 Exceptions

None.

RANDOM ZE STATEMENT

1

General Description

The random ze-stat enment overrides the inplenmentation-predefined
sequence of pseudo-random nunbers as val ues for the RIND func-
tion, allow ng different (and unpredictable) sequences each tine
a given programis executed.

.2 Synt ax

1. random ze-st at enent = RANDOM ZE

. 3 Exanpl es

RANDOM ZE

-27-

20.4 Semantics

Execution of the random ze-statenent shall generate a new un-
predictable starting point for the list of pseudo-random num
bers used by the RND function (see 9).

20.5 Exceptions

20.

6

None.

Remar ks

In the case of inplenmentations which do not have access to a
random zi ng device such as a real-tinme clock, the random ze-
statenent nmay be inplenented by neans of an interaction wth
t he user.

-28-

Table 1

NAME GRAPHIC

Space
Excl amati on- mar k !
Quot ati on- mark
Nunber - si gn #
Dol | ar-sign $
Per cent - si gn %
Anmper sand &
Apostrophe

Left- parenthesis (
Ri ght - par ent hesi s)
Ast eri sk *
Pl us-sign +
Comma)
M nus-si gn -
Ful |l - stop
Sol i dus (sl ash) /

Digits 0 -9
Col on '
Sem - col on
Less-t han-sign <
Equal s-sign =
Great er-than-sign >
Questi on- mar k
Letters A - Z
Circunfl ex-accent A

Under | i ne —_

-29-

TABLE 2
0_IT 1 I I
7 ION O O
1_0l_1_ol 1
T 31415167
ofjofojo]| O 0 P
ojojof1] 1 1T1A}Q
ofoj1]of 2 2|B|[R
ofoj1]1] 3 31C|S
oj1]olo] 4 4LIDY|T
of1foj1| 5 S{E|U
oj1]1]o] 6 6|F |V
oj1j1|1| 7 711G W
1]jofojo| 8 |H|X
1{ofo]1] 9 91I1Y
1{0{1{0]10 'lJd 1 2
1101111111 £ 1K
1]1]ojo]12 <JL
1111011113 =M
111]1]0]14 >IN
1111]15 710

NOTE: In the 7-bit and in the 8-bit code tables two characters
are allocated to pos. 2/4, namely $ and rt. In any version
of the codes a single character is to be allocated to this
position. The character of the 7-bit or of the 8-bit coded
character set, which corresponds to the character $ of the
Minimal BASIC character set is either $ or © (D in the
International Reference Version).

The same applies to pos. 2/3 for the characters £ and #,
the latter being the character of the International Reference
Version.

-30-

APPENDI X 1

Organi zation of the Standard

This Standard is organi zed into a nunber of sections, each of which
covers a particular feature of BASIC. Sections 4 to 20 are divided
into sub-sections, as follows:

Sub-section 1. General Description

This sub-section briefly describes the features of BASIC to be treated
and indicates the general syntactic form of these features.

Sub-section 2. Syntax

The exact syntax of features of the | anguage is described in a nodi-
fied context-free grammar or Backus-Naur Form The details of this
nmet hod of syntax specification are described in Appendix 2.

In order to keep the syntax reasonably sinple the syntax specifica-
tion will allowit to describe some constructions which, strictly
speaki ng, are not |legal according to this Standard, e.g. it wll

al l ow the generation of the statenent

100 LET X = A(1) + A(1,2)

in which the array A occurs with differing nunbers of subscripts.
Rat her than ruling such constructions out by a nore conplicated syn-
tax, this Standard shall instead rule themout in the semantics.

Sub-section 3. Exanpl es

A short |ist of valid exanples that can be generated by certain of
the syntax equations in sub-section 2 is given.

Sub-section 4. Semantics

The semantic rules in this Standard serve two purposes. First, they
rule out certain constructions which are permtted by the syntax, but
whi ch have no valid nmeaning according to this Standard. Second, they
assign a neaning to the remaining constructions.

Sub-section 5. Exceptions

An exception occurs when an inplenentation recogni zes that a program
may not performor is not performng in accordance with this Standard.
Al'l exceptions described in this section shall be reported unless sone
mechanismis provided in an enhancenent to this Standard that has been
i nvoked by the user to handl e exceptions.

Were indicated, certain exceptions nmay be handl ed by the specified
procedures; if no procedure is given, or if restrictions inposed by

-31-

the hardware or the operating environnent nmake it inpossible to
foll ow the given procedures, then the exception nmust be handl ed by
term nating the program Enhancenents to this Standard may
descri be mechani snms for controlling the manner in which exceptions
are reported and handl ed, but no such nechani sns are specified in
this Standard.

This Standard does not specify an order in which exceptions
shal | be detected or processed.

Sub-section 6. Renmarks

Thi s sub-section contains remarks which point out certain features
of this Standard as well as remarks whi ch make recommendati ons con-
cerning the inplenentation of a BASIC | anguage processor in an
operating environnent.

-32-

APPENDI X 2

Met hod of Syntax Specification

The syntax, through a series of rewiting rules known as "product-
ions", defines syntactic objects of various types, such as "progran
or "expression", and describes which strings of synbols are objects of
t hese types.

In the syntax, upper-case letters, digits, and (possibly hyphenated)

| ower-case words are used as "netananes", i.e. as names of syntactic
objects. Mst of these nmetananes are defined by rewiting rules in
ternms of other metanames. In order that this process termnate, certain
nmet ananes are designated as "termnal" netananes, and rewiting rules
for themare not included in the syntax. Al term nal netananmes occur
for the first tine and are defined in Section 4. It should be noted in
particular that all upper-case letters are term nal netananes which
denote thensel ves.

We illustrate further details of the syntax by considering sone ex-
anples. In Section 12 we find the production

gosub-statenent = GO space* SUB |i ne-nunber

whi ch indicates that a "gosub-statenent” consists of the letters G
0, any nunber of spaces, S, U, and B followed by a |ine nunber.

VWhat is a "line-nunber"? In Section 5, the production
[ine-nunber = digit digit? digit? digit?
indicates that a "line-nunber” is a "digit" followed by up to three

other "digits" (the question mark is a syntactic operator indicating
that the object it follows may or may not be present).

VWat is a "digit"? In Section 4, the production
digit = 0/ 1/ 2/ 3/ 4/ 5/ 6/ 7/ 8/ 9

indicates that a "digit" is either a "0", a "1", ... or a "9" (the
solidus is a syntactic operator neaning "or" and is used to indicate
that a netanane can be rewitten in one of several ways). Since the
digits are term nal netananes (i.e. they do not occur on the |eft-hand
si de of any production), our deciphernment of the syntax for the
"gosub-statenent” conmes to an end. The semantics in Section 4 identify
the digits in terns of the characters they represent.

An asterisk is a syntactic operator |ike the question-mark, and it
i ndi cates that the object it follows may occur any nunber of tines,
including zero tinmes, in the production.

For exanpl e
integer = digit digit*

indicates that an "integer"” is a "digit" followed by an arbitrary

-33-

nunber of other "digits".

Parent heses nmay be used to group sequences of netananes together
For exanpl e
vari able-list = variable (conma vari able)*

defines a "variable-list" to consist of a "variable" followed by an
arbitrary nunber of other "variables" separated by "comrmas".

When several syntactic operators occur in the sane production, the
operators "?" and "*" take precedence over the operator "/".

Spaces in the syntax are used to separate hyphenated | ower-case words
from each other. Special conventions are observed regardi ng spaces in
BASI C prograns (see Section 5). The syntax as descri bed generates
progranms which contain no spaces other than those occurring in remarks,
in certain string constants, or where the presence of a space is
explicitly indicated by the netanane "space".

Addi ti onal spaces may be inserted to inprove readability provided
that the restrictions inposed in Section 5 are observed.

-34-
APPENDI X 3

Conf or mance

There are two aspects of conformance to this | anguage Standard:
conformance by a programwitten in the | anguage, and conformance
by an inpl enentati on which processes such prograns.

A programis said to conformto this Standard only when

— each statenent contained therein is a syntactically valid instance
of a statement specified in this Standard,

— each statenment has an explicitly valid neaning specified herein,
and

— the totality of statenents conpose an instance of a valid program
whi ch has an explicitly valid neaning specified herein.

An inmplenmentation is said to conformto this Standard only when

it accepts and processes prograns conformng to this Standard,

it reports reasons for rejecting any program whi ch does not conform
to this Standard,

— it interprets errors and exceptional circunstances according to the
specifications of this Standard,

— its interpretation of the semantics of each statenent of a stand-
ard-conform ng program conforns to the specification in this
St andar d,

— its interpretation of the semantics of a standard-conform ng pro-
gram as a whol e conforns to the specifications in this Standard,

— it accepts as input, manipul ates, and can generate as output nunbers
of at least the precision and range specified in this Standard, and

— it is acconpani ed by a reference manual which clearly defines the
actions taken in regard to features which are called "undefined" or
"inpl enment ati on-defined" in this Standard.

This Standard does not include requirenents for reporting specific
syntactic errors in the text of a program |nplenentations conform ng
to this Standard nmay accept programs witten in an enhanced | anguage
wi t hout having to report all constructs not conformng to this Stand-
ard. However, whenever a statenment or other program el enent does not
conformto the syntactic rules given herein, either an error shall be
reported or the statenment or other program el ement shall have an

i npl enent ati on-defi ned nmeani ng.

-35-

APPENDI X 4

| npl enent ati on-defi ned Features

A nunber of the features defined in this Standard have been |eft
for definition by the inplenmenter. However, this will not affect
portability, provided that the limts recommended in the various
sections are respected. The way these features are inplenented
shall be defined in the user- or system nmanual of the specific

i npl enent ati on.

The followng is a list of inplenentation-defined features:

accuracy of evaluation of numeric expressions (see 8)
end-of-line (see 5, 14 and 15)

exrad-w dth for printing nuneric representations (see 14)
initial value of variables (see 7)

i nput - pronpt (see 15)

| ongest string that can be retained (see 11)

val ue of machine infinitesiml (see 6)

val ue of machine infinity (see 6)

margin for output lines (see 14)
preci sion for nunmeric values (see 6)

print-zone length (see 14)

pseudo-random nunber sequence (see 9 and 20)

significance width for printing nunmeric representations (see 15)
means of requesting the input-reply in batch node (see 15)

-37-

