maths-library

Post Reply
Joel
Posts: 57
Joined: Fri Jan 15, 2016 1:36 pm
My devices: miniipad
Flag: Germany

maths-library

Post by Joel »

Hi, it's me again ;-)
Here some math-functions.

There are 2 sections:
1.section contains test-programs (test 1 ... test 19) which are considered to help to understand how the functions work. Just remove the /*..*/ in the blue section.
Note: You need coord_trans to run the Demos of section 1 which can be found in this lib
2. the functions themselves.

Hope you can make use of some of them...

Bye, Joel

N.B. you might find functions where some input errors haven't been catched...
Well...they are ment to meet my needs so far...

Code: Select all

/*
COLORS used in code
'y': comments
'' :main progamm
'g':find rapidly the line
'b':sub-programms
'c':functions
'r':watch it!!special lines that might cause some trouble 
'm':DATA
''





'r'* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
  DEMO HAS TO BE USED WITH COORD_TRANS from the library!!      *
   * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
''
*/




/*
'b'
'auskommentieren-ANFANG----------
sw=SCREEN_WIDTH() ! sh=SCREEN_HEIGHT()
FIELD "comment" TEXT "" AT sw*0,sh*.86 SIZE sw,sh*.14 ML
FIELD "comment" BACK COLOR 0.717,0.717,0.717
INPUT test
ON test GOSUB test1,test2,test3,test4,test5,test6,test7,test8, test9, test10, test11, test12,test13,test14,test15,test16,test17,test18,test19
END
{{/Bibliothek/coord_trans}}

test1:'i_rnd(a,b) testing equal distribution of random integer numbers
FIELD "comment" TEXT "demonstrates distribution of the function:"&CHR$(10)& "i_rnd(10,15)"&CHR$(10)& "which returns a random integer number between two given integer numbers"
DIM erg(20)
FOR x=1 TO 100000
 z=i_rnd(10,15)
 erg(z)=erg(z)+1
NEXT x
FOR x= 9 TO 16  
 PRINT x, erg(x)
NEXT x
RETURN 'of test1

test2:'r_rnd(a,b) testing equal distribution of random real numbers
FIELD "comment" TEXT "demonstrates distribution of the function:"&CHR$(10)& "r_rnd(10,15)"&CHR$(10)& "which returns a random real number between to given real numbers"
DIM erg(20)
FOR x=1 TO 10000
 z=r_rnd(10,15)
 FOR n= 10 TO 14
  IF z>=n AND z<n+1 THEN erg(n)=erg(n)+1
 NEXT n
NEXT x  
FOR x=10 TO 14
 PRINT "x>=";x;"und x<";x+1 ;erg(x) 
NEXT x
RETURN 'of test2

test3:'phi_line(x1,y1,x2,y2)
 FIELD "comment" TEXT "demonstrates the function:"&CHR$(10)& "phi_line(x1,y1,x2,y2)"&CHR$(10)& "which returns the angle of a line given in Cardassian ahhhrrgh Cartesian coordinates" 
 OPTION ANGLE DEGREES
 INPUT x1,y1,x2,y2
 PRINT phi_line(x1,y1,x2,y2)
 GOTO test3
RETURN 'of test3

test4:'phi_lines(v1x1,v1y1,v1x2,v1y2,v2x1,v2y1,v2x2,v2y2)
 FIELD "comment" TEXT "demonstrates the function:"&CHR$(10)& "phi_lines(v1x1,v1y1,v1x2,v1y2,v2x1,v2y1,v2x2,v2y2)"&CHR$(10)& "which returns the angle of two lines given in Cartesian coordinates" 
 OPTION ANGLE DEGREES
 INPUT v1x1,v1y1,v1x2,v1y2,v2x1,v2y1,v2x2,v2y2
 PRINT phi_lines(v1x1,v1y1,v1x2,v1y2,v2x1,v2y1,v2x2,v2y2)
 GOTO test4
RETURN 'of test4

test5:
 FIELD "comment" TEXT "demonstrates the function:"&CHR$(10)& "nearest(a,gridsize,anchor)"&CHR$(10)& "which returns the distance of 'a' to the next gridline of an anchored grid. gridsize is the distance between two gridlines.(Negative results indicate that the shortest distance is to the left)"
 INPUT a,gridsize,anchor
 PRINT nearest(a,gridsize,anchor)
 GOTO test5
RETURN 'of test5

test6: 
FIELD "comment" TEXT "gives a graphic demonstration of the function:"&CHR$(10)& "nearest(a,gridsize,anchor)"&CHR$(10)& "which returns the distance of 'a' to the next gridline of an anchored grid. Hence the next glueing - point for a grid for example"
INPUT "GRIDSIZE: (for example 5 or so)":gridsize, "ANCHOR: (for example 0 or something like that)":anchor
 GRAPHICS
 FIELD "debug" TEXT "" AT 0,0 SIZE 500,100 ML
 .xmin=-5
 .xmax=5
 DRAW COLOR 1,1,1
 DRAW SIZE 1
 draw_grid(1,1)
 DRAW SIZE 5
 draw_sys()
 DO 
  GET TOUCH 0 AS tx,ty
 UNTIL tx>-1 'proceed at first touch
 DO 
  GET TOUCH 0 AS tx,ty
  tx=btc_x(tx) ! ty=btc_y(ty)
  FIELD "debug" TEXT tx&" ;"&ty&CHR$(13)&STR$(nearest(tx,gridsize,anchor)+tx)&" ;"&STR$(nearest(ty,gridsize,anchor)+ty)'&"ifthen="&nearest.ifthen
  
 UNTIL tx<.xmin 'terminate when touch released
RETURN 'of test6

test7:
 FIELD "comment" TEXT "demonstrates the function:"&CHR$(10)& "nextn(n,gridsize,anchor)"&CHR$(10)& "which returns the coordinate of the 'n'-th line of a grid dependent on gridsize and anchor. (n=0 is the position where the grid has been anchored.)"
 INPUT n,gridsize,anchor
 PRINT nextn(n,gridsize,anchor)
 GOTO test7
RETURN 'of test7

test8:
 FIELD "comment" TEXT "demonstrates the function:"&CHR$(10)& "divide(anchor, length, num_section,n)"&CHR$(10)& "which returns the 'n'-th position on a line with 'length' starting in 'anchor' and divided in a number of sections 'num_section'. Higher numbers for n than num_section are allowed.n=0:anchor-position)"
 INPUT anchor, length, num_section,n
 PRINT divide(anchor, length, num_section,n)
 GOTO test8
 
RETURN 'of test8

test9:
 FIELD "comment" TEXT "demonstrates the function:"&CHR$(10)& "nextn(n,gridsize,anchor)"&CHR$(10)& "which returns the number of the gridline of a point with the coordinate 'a' on a grid with 'gridsize' and 'anchor'. (0 is the position where the grid has been anchored.)"
 INPUT a,gridsize,anchor
 PRINT a,gridsize,anchor
 PRINT gridpos(a,gridsize,anchor)
 GOTO test9

RETURN 'of test9 

test10:
 FIELD "comment" TEXT "demonstrates the quick-and-dirty-programmed function:"&CHR$(10)& "point_on_line(px,py,lpx1,lpy1,lpx2,lpy2)"&CHR$(10)& "which returns -1 if point is off line. otherweise returns a value between [0,1] equivalent to the relation to the length of the line. doesn't really work with vertical lines: division by zero"
 INPUT px,py,lpx1,lpy1,lpx2,lpy2
 PRINT point_on_line(px,py,lpx1,lpy1,lpx2,lpy2)
 GOTO test10
RETURN 'of test10

test11:
  FIELD "comment" TEXT "demonstrates the function:"&CHR$(10)& "length_line(lpx1,lpy1,lpx2,lpy2)"&CHR$(10)& "which is self-explanatory ;-)"
 INPUT lpx1,lpy1,lpx2,lpy2
 PRINT length_line(lpx1,lpy1,lpx2,lpy2)
RETURN 'of test11

test12:
 FIELD "comment" TEXT "demonstrates the function:"&CHR$(10)& "length_line(lpx1,lpy1,lpx2,lpy2)"&CHR$(10)& "which is self-explanatory ;-)"
 lpx1=2 ! lpy1=1 ! lpx2=4 ! lpy2=3
 INPUT lambda
 
 PRINT px_to_line(lambda,lpx1,lpy1,lpx2,lpy2)
 PRINT py_to_line(lambda,lpx1,lpy1,lpx2,lpy2)
 GOTO test12
RETURN 'of test12

test13:
FIELD "comment" TEXT "demonstrates the quick-and-dirty-coded function:"&CHR$(10)& "insepstr$(section,trenn$,string$)"&CHR$(10)& "which returns the n-th section of a string separated by the separator 'trenn$' e.g. could be used to ''decode'' a colour ''r,g,b'' returned by a function. note: some input-errors haven't been catched so far.."
string$=",10,20,30,40,5. "
PRINT string$
INPUT section
trenn$=","

PRINT insepstr$(section,trenn$,string$)


'WHILE insepstr$(section,trenn$,string$)<>"" 
'PRINT "nix"
'DEBUG PAUSE
'END WHILE

GOTO test13

test14:
FIELD "comment" TEXT "demonstrates the function:"&CHR$(10)& "t_rnd(a,b,control)"&CHR$(10)& "which returns a random integer number between [a...b] only once by calling the function again until all numbers have been returned."&CHR$(10)& "control=1: creates new numbers, control=0:returns random numbers just once until all numbers have been returned - it then returns '-1'"
INPUT a,b
TEXT CLEAR
t_rnd(a,b,1)
DO
 a= t_rnd(a,b,0)
 PRINT a
UNTIL  a=-1
 
'DEBUG PAUSE
GOTO test14
RETURN 'of test14

test15:
 FIELD "comment" TEXT "demonstrates the function:"&CHR$(10)& "orthog_cross_x(L1x1,L1y1,L1x2,L1y2,L2x1,L2y1,L2x2,L2y2)"&CHR$(10)& "which returns x-coordinate of x-ing point of to orthogonal lines.returns -1e30 if no intersection"
 INPUT L1x1,L1y1,L1x2,L1y2,L2x1,L2y1,L2x2,L2y2 
 
 'L1x1=1!L1y1=2!L1x2=3!L1y2=2
 'L2x1=2!L2y1=1!L2x2=2!L2y2=3  
 
 PRINT orthog_cross_x(L1x1,L1y1,L1x2,L1y2,L2x1,L2y1,L2x2,L2y2) 
 PRINT orthog_cross_y(L1x1,L1y1,L1x2,L1y2,L2x1,L2y1,L2x2,L2y2)
 GOTO test15
RETURN 'of test15

test16:
FIELD "comment" TEXT "demonstrates the mostly useless function:"&CHR$(10)& "point_on_orthog(px,py,lpx1,lpy1,lpx2,lpy2)"&CHR$(10)& "which returns the position of a point (px,py) on a line (lpx1,lpy1,lpx2,lpy2) as the relation to the length of the line. works only with orthogonals. (angle=0 or 90 degrees)"
INPUT px,py,lpx1,lpy1,lpx2,lpy2
PRINT point_on_orthog(px,py,lpx1,lpy1,lpx2,lpy2)
GOTO test16
RETURN 'of test16

test17:
FIELD "comment" TEXT "demonstrates the sloppily programmed function:"&CHR$(10)& "dist_to_horizontal(px,py,lpx1,lpy1,lpx2,lpy2)"&CHR$(10)& "which returns ...arrghh...it's self-explanatory;-)...works really only with horizontal lines (angle=0 degrees)"
 INPUT px,py,lpx1,lpy1,lpx2,lpy2
PRINT dist_to_horizontal(px,py,lpx1,lpy1,lpx2,lpy2)
GOTO test17
RETURN 'of test17

test18:
FIELD "comment" TEXT "demonstrates the sloppily programmed function:"&CHR$(10)& "dist_to_vertical(px,py,lpx1,lpy1,lpx2,lpy2)"&CHR$(10)& "which returns ...arrghh...it's self-explanatory;-)...works really only with vertical lines (angle=90 degrees)"
 INPUT px,py,lpx1,lpy1,lpx2,lpy2
 PRINT dist_to_vertical(px,py,lpx1,lpy1,lpx2,lpy2)
 GOTO test18
RETURN 'of test18

test19:
FIELD "comment" TEXT "demonstrates the function:"&CHR$(10)& "str_rnd$(L)"&CHR$(10)& "which returns a string of length L with random letters from a...z. Here:concatenation with the function i_rnd(a,b)"&CHR$(10)&"Thus:str_rnd$(i_rnd(5,15))"
FOR m= 1 TO 10
 PRINT str_rnd$(i_rnd(5,15))
NEXT m
RETURN 'of test19

'auskommentieren -ENDE----------
*/
'c'

'returns a string of length L with random letters from a...z
DEF str_rnd$(L)
 letter$=""
 FOR n=1 TO l
  letter$= letter$&CHR$(i_rnd(ASC("a"),ASC("z")))
 NEXT n
 RETURN letter$
END DEF

'returns a random number between [a...b] only once by calling the function until all numbers have been returned
'returns -1 when all numbers have been returned 
'control = 1: creates tupple of numbers [a...b] 
'control=0: returns randomly a number of above created tupples and removes it 
DEF t_rnd(a,b,control)
 IF a<0 OR b<0 OR b<a THEN RETURN -1
 OPTION SORT DESCENDING
 optionbase=OPTION_BASE()
 
 IF control=1 THEN 'new
  num_elements=b-a+1
  DIM m(num_elements)
  n=0
  WHILE n<num_elements
   m(n+optionbase)=a
   a=a+1
   n=n+1
  END WHILE
 ENDIF
 
 IF control=0 THEN 'return rnd and reduce
  IF num_elements=0 THEN RETURN -1
  SORT m
  random=RND(num_elements)+optionbase
  number=m(random)
  m(random)=0
  num_elements=num_elements-1
  
  'DEBUG PAUSE
  RETURN number
 ENDIF
END DEF
'==========
DEF i_rnd(a,b) 'returns random integer between two given numbers [a,b]
 i_rnd=FLOOR((b+1-a) *RND(1)+a)
END DEF
'==========
DEF  r_rnd(a,b) 'returns random real number between two given real numbers (a,b) 
 r_rnd=(b-a)*RND(1)+a
END DEF
'==========
DEF phi_line(x1,y1,x2,y2) 'angle phi of a line defined by two points 
 delta_y=y2-y1 ! delta_x=x2-x1
 phi_vector=ATAN2(delta_y,delta_x)
END DEF
'==========
DEF phi_lines(v1x1,v1y1,v1x2,v1y2,v2x1,v2y1,v2x2,v2y2) 'v1 to v2 in mathematical sense
 phi_lines=phi_line(v2x1,v2y1,v2x2,v2y2)-phi_line(v1x1,v1y1,v1x2,v1y2)
END DEF
'==========
'returns the distance to the nearest number (grid*n+anchor) of a where n is a natural number. (e.g. glueing-to-grid-function of a with c as anchor and b as the gridsize around that anchored point.
DEF nearest(a,grid,anchor) 
 grid=ABS(grid)
 IF grid-(ABS(a-anchor)%grid)>(ABS(a-anchor)%grid) THEN 
  'ifthen=1
  nearest=-1*SIGN(a-anchor)*(ABS(a-anchor)%grid) 
 ELSE 
  'ifthen=2
  nearest=SIGN(a-anchor)*(grid-(ABS(a-anchor)%grid))
 ENDIF
 'IF b-((a-anchor)%b)>((a-anchor)%b) THEN nearest=-1*((a-anchor)%b) ELSE nearest=b-((a-anchor)%b)
END DEF
'===========
'returns the nearest number to a with a grid and its anchor
DEF nearest2(a,grid,anchor) 
 grid=ABS(grid)
 IF grid-(ABS(a-anchor)%grid)>(ABS(a-anchor)%grid) THEN  
  'ifthen=1
  nearest2=-1*SIGN(a-anchor)*(ABS(a-anchor)%grid)+a
 ELSE 
  'ifthen=2
  nearest2=SIGN(a-anchor)*(grid-(ABS(a-anchor)%grid))+a
 ENDIF
END DEF
'==========
'returns the gridposition of a within the grid anchored in anchor. gridpos of anchor = 0
'difference to nearest2(...): this function counts the "gridlines" to 'a' while nearest2 returns the distance 
DEF gridpos(a,grid,anchor)
  grid=ABS(grid)
  IF grid-(ABS(a-anchor)%grid)>(ABS(a-anchor)%grid) THEN  
   m_nearest=-1*SIGN(a-anchor)*(ABS(a-anchor)%grid)+a
  ELSE 
   m_nearest=SIGN(a-anchor)*(grid-(ABS(a-anchor)%grid))+a
  ENDIF
 gridpos=(m_nearest-anchor)/grid
END DEF
'==========
'returns the position of 'n'-th line of the grid dependent on gridsize and anchor. complementary of nearest2.
DEF nextn(a,gridsize,anchor)
 n=INT(a)
 nextn=anchor+gridsize*n
END DEF
'==========
'returns the nth value of a line with length starting in anchor and divided in a number of sections num_section 
DEF divide(anchor,length,num_section,n)
 length_section=length/num_section
 divide= length_section*n+anchor 
END DEF
'==========
DEF point_on_orthog(px,py,lpx1,lpy1,lpx2,lpy2)
 IF (lpx1=lpx2 AND lpy1<>lpy2) OR (lpx1<>lpx2 AND lpy1=lpy2) THEN
  'orthogonal and no point instead of line
  IF lpx1=lpx2 THEN
   'senkrechte
   IF px=lpx1 AND py>=MIN(lpy1,lpy2) AND py<=MAX(lpy1,lpy2) THEN RETURN (py-lpy1)/(lpy2-lpy1)
  ELSE
   'waagrechte
   IF py=lpy1 AND px>=MIN(lpx1,lpx2) AND px<=MAX(lpx1,lpx2) THEN RETURN (px-lpx1)/(lpx2-lpx1)
  ENDIF 
  RETURN -1
 ELSE 'not orthogonal
  RETURN -1
 ENDIF     
END DEF
'==========
'returns -1 if point is off line. otherweise returns a value between [0,1] equivalent to the relation to the length of the line  
DEF point_on_line(px,py,lpx1,lpy1,lpx2,lpy2)
 d_ly=lpy2-lpy1 ! d_lx=lpx2-lpx1
 m=(d_ly)/(d_lx) 'gradient of the line
 IF px-lpx1<>0 THEN 'check division by zero
  IF m<>(py-lpy1)/(px-lpx1) THEN 
   RETURN -1
  ELSE
   point_line_relation=(py-lpy1)/d_ly 'actual calculation of relation
   RETURN point_line_relation 
  ENDIF
 ELSE 'divisor = 0
  IF py-lpy1=0 THEN RETURN 0 'd_x and d_y=0 so point is in the origin of the line
 ENDIF 
END DEF
'============
DEF length_line(lpx1,lpy1,lpx2,lpy2)
 d_y=lpy2-lpy1 ! d_x=lpx2-lpx1
 length=SQR(d_y*d_y+d_x*d_x)
 RETURN length
END DEF
'============
'returns point on the line px with distance lambda from origin of line (lpx1,lpy1). lambda=1 is length of line.  
DEF px_to_line(lambda,lpx1,lpy1,lpx2,lpy2)
 d_x=lpx2-lpx1
 px=d_x*lambda+lpx1
 RETURN px
END DEF
'============
'analogue
DEF py_to_line(lambda,lpx1,lpy1,lpx2,lpy2)
 d_y=lpy2-lpy1
 py=d_y*lambda+lpy1
 RETURN py
END DEF
'============
'returns a substring within a given string$ with trenn$ as separator and thus dividing the string in sections
DEF insepstr$(section,separator$,string$)
 IF string$="" THEN RETURN "ERROR" '-1 problematisch bei der auswertung. Stoppzeichen definieren und übergeben?
 'insepstr$(2,",","123,4567,890") -> 4567
 option_base_=OPTION_BASE()
 OPTION BASE 1
 length=LEN(string$)
 IF INSTR(string$,separator$,1)=-1 THEN RETURN "ERROR" '-1 'trennzeichen nicht vorhanden
 pos2=0
 FOR n= 1 TO section
  pos1=pos2+1 
  IF pos1<=LEN(string$) THEN pos2=INSTR(string$,separator$,pos1) ELSE RETURN "ERROR" '-1
  IF pos2 = -1 THEN BREAK 'letztes komma fehlt
 NEXT n
  IF n=section AND pos1<=length THEN pos2=length+1 'letzte komma fehlt
  IF n<section THEN RETURN "ERROR" '-1 'weniger sections als erwartet
  '(n=section und noch zeichen übrig: letztes komma fehlt, sonst zuwenig sections
  
  RETURN MID$(string$,pos1,pos2-pos1)
 OPTION BASE option_base_
END DEF
'===========
'returns x-coordinate of x-ing point of to orthogonal lines.returns -1e30 if no intersection
DEF orthog_cross_x(L1x1,L1y1,L1x2,L1y2,L2x1,L2y1,L2x2,L2y2)
 L1(1,1)=L1x1
 L1(1,2)=L1y1
 L1(2,1)=L1x2
 L1(2,2)=L1y2
 
 L2(1,1)=L2x1
 L2(1,2)=L2y1
 L2(2,1)=L2x2
 L2(2,2)=L2y2
 
 IF L1(1,1)=L1(2,1) THEN bool(1)=1
 IF L1(1,2)=L1(2,2) THEN bool(2)=1
 IF L2(1,1)=L2(2,1) THEN bool(3)=1
 IF L2(1,2)=L2(2,2) THEN bool(4)=1
 
 IF (bool(1)=0 AND bool(2)=1 AND bool(3)=1 AND bool(4)=0) OR (bool(1)=1 AND bool(2)=0 AND bool(3)=0 AND bool(4)=1) THEN
  'orthogonal
  IF bool(1)=1  THEN 
   x=L1(1,1) ! y=L2(1,2)
  ELSE
   x=L2(1,1) ! y=L1(1,2)
  ENDIF
 'now check if point is on one line
 IF point_on_orthog(x,y,L1x1,L1y1,L1x2,L1y2)>0 AND point_on_orthog(x,y,L2x1,L2y1,L2x2,L2y2)>0 THEN RETURN x
 ELSE 'not orthogonal
  RETURN -1e308
 ENDIF   
END DEF
'===========
'returns x-coordinate of x-ing point of to orthogonal lines.returns -1e30 if no intersection
DEF orthog_cross_y(L1x1,L1y1,L1x2,L1y2,L2x1,L2y1,L2x2,L2y2)
 L1(1,1)=L1x1
 L1(1,2)=L1y1
 L1(2,1)=L1x2
 L1(2,2)=L1y2
 
 L2(1,1)=L2x1
 L2(1,2)=L2y1
 L2(2,1)=L2x2
 L2(2,2)=L2y2
 
 IF L1(1,1)=L1(2,1) THEN bool(1)=1
 IF L1(1,2)=L1(2,2) THEN bool(2)=1
 IF L2(1,1)=L2(2,1) THEN bool(3)=1
 IF L2(1,2)=L2(2,2) THEN bool(4)=1
 
 IF (bool(1)=0 AND bool(2)=1 AND bool(3)=1 AND bool(4)=0) OR (bool(1)=1 AND bool(2)=0 AND bool(3)=0 AND bool(4)=1) THEN
  'orthogonal
  IF bool(1)=1  THEN 
   x=L1(1,1) ! y=L2(1,2)
  ELSE
   x=L2(1,1) ! y=L1(1,2)
  ENDIF
 'now check if point is on one line
 IF point_on_orthog(x,y,L1x1,L1y1,L1x2,L1y2)>0 AND point_on_orthog(x,y,L2x1,L2y1,L2x2,L2y2)>0 THEN RETURN y   
 ELSE 'not orthogonal
  RETURN -1e308
 ENDIF   
END DEF
'==========
DEF dist_to_horizontal(px,py,lpx1,lpy1,lpx2,lpy2)
 IF lpx1<>lpx2 AND lpy1=lpy2 THEN
  'horizontal
  IF px>=MIN(lpx1,lpx2) AND px<=MAX(lpx1,lpx2) THEN RETURN py-lpy1 ELSE RETURN -1 'pos if point overhead else neg.
 ELSE
  'not horizontal
  RETURN -1
 ENDIF 
END DEF
'==========
'remark. generalisation of this problem: turn line(lp2) and point (p) around lp1 then perp_to_orthog
DEF dist_to_vertical(px,py,lpx1,lpy1,lpx2,lpy2)
 IF lpy1<>lpy2 AND lpx1=lpx2 THEN
  'vertical
  IF py>=MIN(lpy1,lpy2) AND py<=MAX(lpy1,lpy2) THEN RETURN px-lpx1 ELSE RETURN -1 'pos if point right else neg.
 ELSE
  'not horizontal
  RETURN -1
 ENDIF 
END DEF

User avatar
GeorgeMcGinn
Posts: 435
Joined: Sat Sep 10, 2016 6:37 am
My devices: IPad Pro 10.5in
IMac
Linux i386
Windows 7 & 10
Location: Venice, FL
Flag: United States of America
Contact:

Re: maths-library

Post by GeorgeMcGinn »

You have a LIB in here that could not be found: {{/Bibliothek/coord_trans}}

George.
Joel wrote:
Thu Jan 05, 2017 3:35 pm
Hi, it's me again ;-)
Here some math-functions.

There are 2 sections:
1.section contains test-programs (test 1 ... test 19) which are considered to help to understand how the functions work. Just remove the /*..*/ in the blue section.
Note: You need coord_trans to run the Demos of section 1 which can be found in this lib
2. the functions themselves.

Hope you can make use of some of them...

Bye, Joel

N.B. you might find functions where some input errors haven't been catched...
Well...they are ment to meet my needs so far...

Code: Select all

/*
COLORS used in code
'y': comments
'' :main progamm
'g':find rapidly the line
'b':sub-programms
'c':functions
'r':watch it!!special lines that might cause some trouble 
'm':DATA
''





'r'* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
  DEMO HAS TO BE USED WITH COORD_TRANS from the library!!      *
   * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
''
*/




/*
'b'
'auskommentieren-ANFANG----------
sw=SCREEN_WIDTH() ! sh=SCREEN_HEIGHT()
FIELD "comment" TEXT "" AT sw*0,sh*.86 SIZE sw,sh*.14 ML
FIELD "comment" BACK COLOR 0.717,0.717,0.717
INPUT test
ON test GOSUB test1,test2,test3,test4,test5,test6,test7,test8, test9, test10, test11, test12,test13,test14,test15,test16,test17,test18,test19
END
{{/Bibliothek/coord_trans}}

test1:'i_rnd(a,b) testing equal distribution of random integer numbers
FIELD "comment" TEXT "demonstrates distribution of the function:"&CHR$(10)& "i_rnd(10,15)"&CHR$(10)& "which returns a random integer number between two given integer numbers"
DIM erg(20)
FOR x=1 TO 100000
 z=i_rnd(10,15)
 erg(z)=erg(z)+1
NEXT x
FOR x= 9 TO 16  
 PRINT x, erg(x)
NEXT x
RETURN 'of test1

test2:'r_rnd(a,b) testing equal distribution of random real numbers
FIELD "comment" TEXT "demonstrates distribution of the function:"&CHR$(10)& "r_rnd(10,15)"&CHR$(10)& "which returns a random real number between to given real numbers"
DIM erg(20)
FOR x=1 TO 10000
 z=r_rnd(10,15)
 FOR n= 10 TO 14
  IF z>=n AND z<n+1 THEN erg(n)=erg(n)+1
 NEXT n
NEXT x  
FOR x=10 TO 14
 PRINT "x>=";x;"und x<";x+1 ;erg(x) 
NEXT x
RETURN 'of test2

test3:'phi_line(x1,y1,x2,y2)
 FIELD "comment" TEXT "demonstrates the function:"&CHR$(10)& "phi_line(x1,y1,x2,y2)"&CHR$(10)& "which returns the angle of a line given in Cardassian ahhhrrgh Cartesian coordinates" 
 OPTION ANGLE DEGREES
 INPUT x1,y1,x2,y2
 PRINT phi_line(x1,y1,x2,y2)
 GOTO test3
RETURN 'of test3

test4:'phi_lines(v1x1,v1y1,v1x2,v1y2,v2x1,v2y1,v2x2,v2y2)
 FIELD "comment" TEXT "demonstrates the function:"&CHR$(10)& "phi_lines(v1x1,v1y1,v1x2,v1y2,v2x1,v2y1,v2x2,v2y2)"&CHR$(10)& "which returns the angle of two lines given in Cartesian coordinates" 
 OPTION ANGLE DEGREES
 INPUT v1x1,v1y1,v1x2,v1y2,v2x1,v2y1,v2x2,v2y2
 PRINT phi_lines(v1x1,v1y1,v1x2,v1y2,v2x1,v2y1,v2x2,v2y2)
 GOTO test4
RETURN 'of test4

test5:
 FIELD "comment" TEXT "demonstrates the function:"&CHR$(10)& "nearest(a,gridsize,anchor)"&CHR$(10)& "which returns the distance of 'a' to the next gridline of an anchored grid. gridsize is the distance between two gridlines.(Negative results indicate that the shortest distance is to the left)"
 INPUT a,gridsize,anchor
 PRINT nearest(a,gridsize,anchor)
 GOTO test5
RETURN 'of test5

test6: 
FIELD "comment" TEXT "gives a graphic demonstration of the function:"&CHR$(10)& "nearest(a,gridsize,anchor)"&CHR$(10)& "which returns the distance of 'a' to the next gridline of an anchored grid. Hence the next glueing - point for a grid for example"
INPUT "GRIDSIZE: (for example 5 or so)":gridsize, "ANCHOR: (for example 0 or something like that)":anchor
 GRAPHICS
 FIELD "debug" TEXT "" AT 0,0 SIZE 500,100 ML
 .xmin=-5
 .xmax=5
 DRAW COLOR 1,1,1
 DRAW SIZE 1
 draw_grid(1,1)
 DRAW SIZE 5
 draw_sys()
 DO 
  GET TOUCH 0 AS tx,ty
 UNTIL tx>-1 'proceed at first touch
 DO 
  GET TOUCH 0 AS tx,ty
  tx=btc_x(tx) ! ty=btc_y(ty)
  FIELD "debug" TEXT tx&" ;"&ty&CHR$(13)&STR$(nearest(tx,gridsize,anchor)+tx)&" ;"&STR$(nearest(ty,gridsize,anchor)+ty)'&"ifthen="&nearest.ifthen
  
 UNTIL tx<.xmin 'terminate when touch released
RETURN 'of test6

test7:
 FIELD "comment" TEXT "demonstrates the function:"&CHR$(10)& "nextn(n,gridsize,anchor)"&CHR$(10)& "which returns the coordinate of the 'n'-th line of a grid dependent on gridsize and anchor. (n=0 is the position where the grid has been anchored.)"
 INPUT n,gridsize,anchor
 PRINT nextn(n,gridsize,anchor)
 GOTO test7
RETURN 'of test7

test8:
 FIELD "comment" TEXT "demonstrates the function:"&CHR$(10)& "divide(anchor, length, num_section,n)"&CHR$(10)& "which returns the 'n'-th position on a line with 'length' starting in 'anchor' and divided in a number of sections 'num_section'. Higher numbers for n than num_section are allowed.n=0:anchor-position)"
 INPUT anchor, length, num_section,n
 PRINT divide(anchor, length, num_section,n)
 GOTO test8
 
RETURN 'of test8

test9:
 FIELD "comment" TEXT "demonstrates the function:"&CHR$(10)& "nextn(n,gridsize,anchor)"&CHR$(10)& "which returns the number of the gridline of a point with the coordinate 'a' on a grid with 'gridsize' and 'anchor'. (0 is the position where the grid has been anchored.)"
 INPUT a,gridsize,anchor
 PRINT a,gridsize,anchor
 PRINT gridpos(a,gridsize,anchor)
 GOTO test9

RETURN 'of test9 

test10:
 FIELD "comment" TEXT "demonstrates the quick-and-dirty-programmed function:"&CHR$(10)& "point_on_line(px,py,lpx1,lpy1,lpx2,lpy2)"&CHR$(10)& "which returns -1 if point is off line. otherweise returns a value between [0,1] equivalent to the relation to the length of the line. doesn't really work with vertical lines: division by zero"
 INPUT px,py,lpx1,lpy1,lpx2,lpy2
 PRINT point_on_line(px,py,lpx1,lpy1,lpx2,lpy2)
 GOTO test10
RETURN 'of test10

test11:
  FIELD "comment" TEXT "demonstrates the function:"&CHR$(10)& "length_line(lpx1,lpy1,lpx2,lpy2)"&CHR$(10)& "which is self-explanatory ;-)"
 INPUT lpx1,lpy1,lpx2,lpy2
 PRINT length_line(lpx1,lpy1,lpx2,lpy2)
RETURN 'of test11

test12:
 FIELD "comment" TEXT "demonstrates the function:"&CHR$(10)& "length_line(lpx1,lpy1,lpx2,lpy2)"&CHR$(10)& "which is self-explanatory ;-)"
 lpx1=2 ! lpy1=1 ! lpx2=4 ! lpy2=3
 INPUT lambda
 
 PRINT px_to_line(lambda,lpx1,lpy1,lpx2,lpy2)
 PRINT py_to_line(lambda,lpx1,lpy1,lpx2,lpy2)
 GOTO test12
RETURN 'of test12

test13:
FIELD "comment" TEXT "demonstrates the quick-and-dirty-coded function:"&CHR$(10)& "insepstr$(section,trenn$,string$)"&CHR$(10)& "which returns the n-th section of a string separated by the separator 'trenn$' e.g. could be used to ''decode'' a colour ''r,g,b'' returned by a function. note: some input-errors haven't been catched so far.."
string$=",10,20,30,40,5. "
PRINT string$
INPUT section
trenn$=","

PRINT insepstr$(section,trenn$,string$)


'WHILE insepstr$(section,trenn$,string$)<>"" 
'PRINT "nix"
'DEBUG PAUSE
'END WHILE

GOTO test13

test14:
FIELD "comment" TEXT "demonstrates the function:"&CHR$(10)& "t_rnd(a,b,control)"&CHR$(10)& "which returns a random integer number between [a...b] only once by calling the function again until all numbers have been returned."&CHR$(10)& "control=1: creates new numbers, control=0:returns random numbers just once until all numbers have been returned - it then returns '-1'"
INPUT a,b
TEXT CLEAR
t_rnd(a,b,1)
DO
 a= t_rnd(a,b,0)
 PRINT a
UNTIL  a=-1
 
'DEBUG PAUSE
GOTO test14
RETURN 'of test14

test15:
 FIELD "comment" TEXT "demonstrates the function:"&CHR$(10)& "orthog_cross_x(L1x1,L1y1,L1x2,L1y2,L2x1,L2y1,L2x2,L2y2)"&CHR$(10)& "which returns x-coordinate of x-ing point of to orthogonal lines.returns -1e30 if no intersection"
 INPUT L1x1,L1y1,L1x2,L1y2,L2x1,L2y1,L2x2,L2y2 
 
 'L1x1=1!L1y1=2!L1x2=3!L1y2=2
 'L2x1=2!L2y1=1!L2x2=2!L2y2=3  
 
 PRINT orthog_cross_x(L1x1,L1y1,L1x2,L1y2,L2x1,L2y1,L2x2,L2y2) 
 PRINT orthog_cross_y(L1x1,L1y1,L1x2,L1y2,L2x1,L2y1,L2x2,L2y2)
 GOTO test15
RETURN 'of test15

test16:
FIELD "comment" TEXT "demonstrates the mostly useless function:"&CHR$(10)& "point_on_orthog(px,py,lpx1,lpy1,lpx2,lpy2)"&CHR$(10)& "which returns the position of a point (px,py) on a line (lpx1,lpy1,lpx2,lpy2) as the relation to the length of the line. works only with orthogonals. (angle=0 or 90 degrees)"
INPUT px,py,lpx1,lpy1,lpx2,lpy2
PRINT point_on_orthog(px,py,lpx1,lpy1,lpx2,lpy2)
GOTO test16
RETURN 'of test16

test17:
FIELD "comment" TEXT "demonstrates the sloppily programmed function:"&CHR$(10)& "dist_to_horizontal(px,py,lpx1,lpy1,lpx2,lpy2)"&CHR$(10)& "which returns ...arrghh...it's self-explanatory;-)...works really only with horizontal lines (angle=0 degrees)"
 INPUT px,py,lpx1,lpy1,lpx2,lpy2
PRINT dist_to_horizontal(px,py,lpx1,lpy1,lpx2,lpy2)
GOTO test17
RETURN 'of test17

test18:
FIELD "comment" TEXT "demonstrates the sloppily programmed function:"&CHR$(10)& "dist_to_vertical(px,py,lpx1,lpy1,lpx2,lpy2)"&CHR$(10)& "which returns ...arrghh...it's self-explanatory;-)...works really only with vertical lines (angle=90 degrees)"
 INPUT px,py,lpx1,lpy1,lpx2,lpy2
 PRINT dist_to_vertical(px,py,lpx1,lpy1,lpx2,lpy2)
 GOTO test18
RETURN 'of test18

test19:
FIELD "comment" TEXT "demonstrates the function:"&CHR$(10)& "str_rnd$(L)"&CHR$(10)& "which returns a string of length L with random letters from a...z. Here:concatenation with the function i_rnd(a,b)"&CHR$(10)&"Thus:str_rnd$(i_rnd(5,15))"
FOR m= 1 TO 10
 PRINT str_rnd$(i_rnd(5,15))
NEXT m
RETURN 'of test19

'auskommentieren -ENDE----------
*/
'c'

'returns a string of length L with random letters from a...z
DEF str_rnd$(L)
 letter$=""
 FOR n=1 TO l
  letter$= letter$&CHR$(i_rnd(ASC("a"),ASC("z")))
 NEXT n
 RETURN letter$
END DEF

'returns a random number between [a...b] only once by calling the function until all numbers have been returned
'returns -1 when all numbers have been returned 
'control = 1: creates tupple of numbers [a...b] 
'control=0: returns randomly a number of above created tupples and removes it 
DEF t_rnd(a,b,control)
 IF a<0 OR b<0 OR b<a THEN RETURN -1
 OPTION SORT DESCENDING
 optionbase=OPTION_BASE()
 
 IF control=1 THEN 'new
  num_elements=b-a+1
  DIM m(num_elements)
  n=0
  WHILE n<num_elements
   m(n+optionbase)=a
   a=a+1
   n=n+1
  END WHILE
 ENDIF
 
 IF control=0 THEN 'return rnd and reduce
  IF num_elements=0 THEN RETURN -1
  SORT m
  random=RND(num_elements)+optionbase
  number=m(random)
  m(random)=0
  num_elements=num_elements-1
  
  'DEBUG PAUSE
  RETURN number
 ENDIF
END DEF
'==========
DEF i_rnd(a,b) 'returns random integer between two given numbers [a,b]
 i_rnd=FLOOR((b+1-a) *RND(1)+a)
END DEF
'==========
DEF  r_rnd(a,b) 'returns random real number between two given real numbers (a,b) 
 r_rnd=(b-a)*RND(1)+a
END DEF
'==========
DEF phi_line(x1,y1,x2,y2) 'angle phi of a line defined by two points 
 delta_y=y2-y1 ! delta_x=x2-x1
 phi_vector=ATAN2(delta_y,delta_x)
END DEF
'==========
DEF phi_lines(v1x1,v1y1,v1x2,v1y2,v2x1,v2y1,v2x2,v2y2) 'v1 to v2 in mathematical sense
 phi_lines=phi_line(v2x1,v2y1,v2x2,v2y2)-phi_line(v1x1,v1y1,v1x2,v1y2)
END DEF
'==========
'returns the distance to the nearest number (grid*n+anchor) of a where n is a natural number. (e.g. glueing-to-grid-function of a with c as anchor and b as the gridsize around that anchored point.
DEF nearest(a,grid,anchor) 
 grid=ABS(grid)
 IF grid-(ABS(a-anchor)%grid)>(ABS(a-anchor)%grid) THEN 
  'ifthen=1
  nearest=-1*SIGN(a-anchor)*(ABS(a-anchor)%grid) 
 ELSE 
  'ifthen=2
  nearest=SIGN(a-anchor)*(grid-(ABS(a-anchor)%grid))
 ENDIF
 'IF b-((a-anchor)%b)>((a-anchor)%b) THEN nearest=-1*((a-anchor)%b) ELSE nearest=b-((a-anchor)%b)
END DEF
'===========
'returns the nearest number to a with a grid and its anchor
DEF nearest2(a,grid,anchor) 
 grid=ABS(grid)
 IF grid-(ABS(a-anchor)%grid)>(ABS(a-anchor)%grid) THEN  
  'ifthen=1
  nearest2=-1*SIGN(a-anchor)*(ABS(a-anchor)%grid)+a
 ELSE 
  'ifthen=2
  nearest2=SIGN(a-anchor)*(grid-(ABS(a-anchor)%grid))+a
 ENDIF
END DEF
'==========
'returns the gridposition of a within the grid anchored in anchor. gridpos of anchor = 0
'difference to nearest2(...): this function counts the "gridlines" to 'a' while nearest2 returns the distance 
DEF gridpos(a,grid,anchor)
  grid=ABS(grid)
  IF grid-(ABS(a-anchor)%grid)>(ABS(a-anchor)%grid) THEN  
   m_nearest=-1*SIGN(a-anchor)*(ABS(a-anchor)%grid)+a
  ELSE 
   m_nearest=SIGN(a-anchor)*(grid-(ABS(a-anchor)%grid))+a
  ENDIF
 gridpos=(m_nearest-anchor)/grid
END DEF
'==========
'returns the position of 'n'-th line of the grid dependent on gridsize and anchor. complementary of nearest2.
DEF nextn(a,gridsize,anchor)
 n=INT(a)
 nextn=anchor+gridsize*n
END DEF
'==========
'returns the nth value of a line with length starting in anchor and divided in a number of sections num_section 
DEF divide(anchor,length,num_section,n)
 length_section=length/num_section
 divide= length_section*n+anchor 
END DEF
'==========
DEF point_on_orthog(px,py,lpx1,lpy1,lpx2,lpy2)
 IF (lpx1=lpx2 AND lpy1<>lpy2) OR (lpx1<>lpx2 AND lpy1=lpy2) THEN
  'orthogonal and no point instead of line
  IF lpx1=lpx2 THEN
   'senkrechte
   IF px=lpx1 AND py>=MIN(lpy1,lpy2) AND py<=MAX(lpy1,lpy2) THEN RETURN (py-lpy1)/(lpy2-lpy1)
  ELSE
   'waagrechte
   IF py=lpy1 AND px>=MIN(lpx1,lpx2) AND px<=MAX(lpx1,lpx2) THEN RETURN (px-lpx1)/(lpx2-lpx1)
  ENDIF 
  RETURN -1
 ELSE 'not orthogonal
  RETURN -1
 ENDIF     
END DEF
'==========
'returns -1 if point is off line. otherweise returns a value between [0,1] equivalent to the relation to the length of the line  
DEF point_on_line(px,py,lpx1,lpy1,lpx2,lpy2)
 d_ly=lpy2-lpy1 ! d_lx=lpx2-lpx1
 m=(d_ly)/(d_lx) 'gradient of the line
 IF px-lpx1<>0 THEN 'check division by zero
  IF m<>(py-lpy1)/(px-lpx1) THEN 
   RETURN -1
  ELSE
   point_line_relation=(py-lpy1)/d_ly 'actual calculation of relation
   RETURN point_line_relation 
  ENDIF
 ELSE 'divisor = 0
  IF py-lpy1=0 THEN RETURN 0 'd_x and d_y=0 so point is in the origin of the line
 ENDIF 
END DEF
'============
DEF length_line(lpx1,lpy1,lpx2,lpy2)
 d_y=lpy2-lpy1 ! d_x=lpx2-lpx1
 length=SQR(d_y*d_y+d_x*d_x)
 RETURN length
END DEF
'============
'returns point on the line px with distance lambda from origin of line (lpx1,lpy1). lambda=1 is length of line.  
DEF px_to_line(lambda,lpx1,lpy1,lpx2,lpy2)
 d_x=lpx2-lpx1
 px=d_x*lambda+lpx1
 RETURN px
END DEF
'============
'analogue
DEF py_to_line(lambda,lpx1,lpy1,lpx2,lpy2)
 d_y=lpy2-lpy1
 py=d_y*lambda+lpy1
 RETURN py
END DEF
'============
'returns a substring within a given string$ with trenn$ as separator and thus dividing the string in sections
DEF insepstr$(section,separator$,string$)
 IF string$="" THEN RETURN "ERROR" '-1 problematisch bei der auswertung. Stoppzeichen definieren und übergeben?
 'insepstr$(2,",","123,4567,890") -> 4567
 option_base_=OPTION_BASE()
 OPTION BASE 1
 length=LEN(string$)
 IF INSTR(string$,separator$,1)=-1 THEN RETURN "ERROR" '-1 'trennzeichen nicht vorhanden
 pos2=0
 FOR n= 1 TO section
  pos1=pos2+1 
  IF pos1<=LEN(string$) THEN pos2=INSTR(string$,separator$,pos1) ELSE RETURN "ERROR" '-1
  IF pos2 = -1 THEN BREAK 'letztes komma fehlt
 NEXT n
  IF n=section AND pos1<=length THEN pos2=length+1 'letzte komma fehlt
  IF n<section THEN RETURN "ERROR" '-1 'weniger sections als erwartet
  '(n=section und noch zeichen übrig: letztes komma fehlt, sonst zuwenig sections
  
  RETURN MID$(string$,pos1,pos2-pos1)
 OPTION BASE option_base_
END DEF
'===========
'returns x-coordinate of x-ing point of to orthogonal lines.returns -1e30 if no intersection
DEF orthog_cross_x(L1x1,L1y1,L1x2,L1y2,L2x1,L2y1,L2x2,L2y2)
 L1(1,1)=L1x1
 L1(1,2)=L1y1
 L1(2,1)=L1x2
 L1(2,2)=L1y2
 
 L2(1,1)=L2x1
 L2(1,2)=L2y1
 L2(2,1)=L2x2
 L2(2,2)=L2y2
 
 IF L1(1,1)=L1(2,1) THEN bool(1)=1
 IF L1(1,2)=L1(2,2) THEN bool(2)=1
 IF L2(1,1)=L2(2,1) THEN bool(3)=1
 IF L2(1,2)=L2(2,2) THEN bool(4)=1
 
 IF (bool(1)=0 AND bool(2)=1 AND bool(3)=1 AND bool(4)=0) OR (bool(1)=1 AND bool(2)=0 AND bool(3)=0 AND bool(4)=1) THEN
  'orthogonal
  IF bool(1)=1  THEN 
   x=L1(1,1) ! y=L2(1,2)
  ELSE
   x=L2(1,1) ! y=L1(1,2)
  ENDIF
 'now check if point is on one line
 IF point_on_orthog(x,y,L1x1,L1y1,L1x2,L1y2)>0 AND point_on_orthog(x,y,L2x1,L2y1,L2x2,L2y2)>0 THEN RETURN x
 ELSE 'not orthogonal
  RETURN -1e308
 ENDIF   
END DEF
'===========
'returns x-coordinate of x-ing point of to orthogonal lines.returns -1e30 if no intersection
DEF orthog_cross_y(L1x1,L1y1,L1x2,L1y2,L2x1,L2y1,L2x2,L2y2)
 L1(1,1)=L1x1
 L1(1,2)=L1y1
 L1(2,1)=L1x2
 L1(2,2)=L1y2
 
 L2(1,1)=L2x1
 L2(1,2)=L2y1
 L2(2,1)=L2x2
 L2(2,2)=L2y2
 
 IF L1(1,1)=L1(2,1) THEN bool(1)=1
 IF L1(1,2)=L1(2,2) THEN bool(2)=1
 IF L2(1,1)=L2(2,1) THEN bool(3)=1
 IF L2(1,2)=L2(2,2) THEN bool(4)=1
 
 IF (bool(1)=0 AND bool(2)=1 AND bool(3)=1 AND bool(4)=0) OR (bool(1)=1 AND bool(2)=0 AND bool(3)=0 AND bool(4)=1) THEN
  'orthogonal
  IF bool(1)=1  THEN 
   x=L1(1,1) ! y=L2(1,2)
  ELSE
   x=L2(1,1) ! y=L1(1,2)
  ENDIF
 'now check if point is on one line
 IF point_on_orthog(x,y,L1x1,L1y1,L1x2,L1y2)>0 AND point_on_orthog(x,y,L2x1,L2y1,L2x2,L2y2)>0 THEN RETURN y   
 ELSE 'not orthogonal
  RETURN -1e308
 ENDIF   
END DEF
'==========
DEF dist_to_horizontal(px,py,lpx1,lpy1,lpx2,lpy2)
 IF lpx1<>lpx2 AND lpy1=lpy2 THEN
  'horizontal
  IF px>=MIN(lpx1,lpx2) AND px<=MAX(lpx1,lpx2) THEN RETURN py-lpy1 ELSE RETURN -1 'pos if point overhead else neg.
 ELSE
  'not horizontal
  RETURN -1
 ENDIF 
END DEF
'==========
'remark. generalisation of this problem: turn line(lp2) and point (p) around lp1 then perp_to_orthog
DEF dist_to_vertical(px,py,lpx1,lpy1,lpx2,lpy2)
 IF lpy1<>lpy2 AND lpx1=lpx2 THEN
  'vertical
  IF py>=MIN(lpy1,lpy2) AND py<=MAX(lpy1,lpy2) THEN RETURN px-lpx1 ELSE RETURN -1 'pos if point right else neg.
 ELSE
  'not horizontal
  RETURN -1
 ENDIF 
END DEF
George McGinn
Computer Scientist/Cosmologist/Writer/Photographer
Member: IEEE, IEEE Computer Society
IEEE Sensors Council & IoT Technical Community
American Association for the Advancement of Science (AAAS)

Joel
Posts: 57
Joined: Fri Jan 15, 2016 1:36 pm
My devices: miniipad
Flag: Germany

Re: maths-library

Post by Joel »

hi george, sorry, i could not avoid, that one lib refers to the other -at least as to the demo-section.
the needed lib is the thing in the thread: "coordinate transformation" .
you should either copy that file to your programs and adapt the path, or copy the whole stuff into maths-lib. don't forget to set the comment-signs around the test-section...
bye, joel

User avatar
GeorgeMcGinn
Posts: 435
Joined: Sat Sep 10, 2016 6:37 am
My devices: IPad Pro 10.5in
IMac
Linux i386
Windows 7 & 10
Location: Venice, FL
Flag: United States of America
Contact:

Re: maths-library

Post by GeorgeMcGinn »

I thought so, but wasn't sure. Thanks.
Joel wrote:
Thu Jan 12, 2017 8:31 am
hi george, sorry, i could not avoid, that one lib refers to the other -at least as to the demo-section.
the needed lib is the thing in the thread: "coordinate transformation" .
you should either copy that file to your programs and adapt the path, or copy the whole stuff into maths-lib. don't forget to set the comment-signs around the test-section...
bye, joel
George McGinn
Computer Scientist/Cosmologist/Writer/Photographer
Member: IEEE, IEEE Computer Society
IEEE Sensors Council & IoT Technical Community
American Association for the Advancement of Science (AAAS)

Post Reply